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A virtual workshop was organized by the Heart Valve Collaboratory to identify areas of expert consensus, areas of

disagreement, and evidence gaps related to bioprosthetic aortic valve hemodynamics. Impaired functional performance

of bioprosthetic aortic valve replacement is associated with adverse patient outcomes; however, this assessment is

complicated by the lack of standardization for labelling, definitions, and measurement techniques, both after surgical and

transcatheter valve replacement. Echocardiography remains the standard assessment methodology because of its ease of

performance, widespread availability, ability to do serial measurements over time, and correlation with outcomes.

Management of a high gradient after replacement requires integration of the patient’s clinical status, physical exami-

nation, and multimodality imaging in addition to shared patient decisions regarding treatment options. Future priorities

that are underway include efforts to standardize prosthesis sizing and labelling for both surgical and transcatheter valves

as well as trials to characterize the consequences of adverse hemodynamics. (J Am Coll Cardiol 2022;80:527–544)
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HIGHLIGHTS

� Impaired functional performance of
aortic valve bioprostheses is associated
with adverse outcomes.

� Assessment of valve performance is
complicated by lack of standardized la-
beling, definitions, and measurement
techniques after either surgical or trans-
catheter valve replacement.

� Management of patients with high
transvalvular bioprosthetic aortic valve
gradients requires integration of clinical
status, clinical and multimodality imag-
ing findings, and shared decision-making.
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B ioprosthetic valve hemodynamic per-
formance is predictive of intermedi-
ate and long-term clinical outcomes

after aortic valve replacement (AVR).1-12

Transcatheter prostheses may have better
systolic hemodynamic performance than
surgical bioprostheses, but important differ-
ences exist between types of surgical and
transcatheter valves.13-20 In addition, assess-
ment of valve function is complicated by the
lack of standardization in device sizing,
labelling, definitions, and measurement.21 A
recent virtual workshop organized by the
Heart Valve Collaboratory22 was convened
to discuss and address these issues to iden-
tify areas of consensus, areas of disagree-
ment, and those with evidence gaps for which more
information is needed. This report summarizes the
results of that workshop.

ASSESSMENT OF VALVE

HEMODYNAMICS POST-AVR

The hemodynamic performance of a prosthetic aortic
valve is dependent on several structural and flow
characteristics that may differ between devices and
the methods of assessment. Current guidelines
recommend echocardiography for the initial post-
operative evaluation of prosthetic valves to establish
baseline function and repeat echocardiography for the
evaluation of suspected prosthetic valve dysfunction,
a change in clinical status or examination, and when
findings would change management or guide ther-
apy.23-26 However, recent studies demonstrating
discordance between echocardiographic and invasive
measures of pressure gradients immediately
following prosthetic valve implantation have raised
questions about the utility of some noninvasive
measurements of valve hemodynamic function.27,28

ADVANTAGES OF ECHOCARDIOGRAPHIC MEASUREMENT.

There are multiple advantages to the use of echocar-
diography for diagnosis and follow-up (Table 1). First,
the test is known to be safe and widely accessible.
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Because it is performed awake, without fasting or
change in medications, hemodynamics can be
assessed both during the patients’ baseline loading
conditions, and if needed during stress.29 Second,
echocardiographic measurements can provide multi-
ple confirmatory parameters to improve diagnostic
accuracy: flow velocities and pressure gradients,
valve area, and Doppler velocity index.30 Third,
echocardiography allows assessment of the
morphology of valve leaflets and thus can identify
structural changes to the prosthetic valve, distinguish
paravalvular from central bioprosthetic regurgitation,
and accurately measure severe prosthetic stenosis.31

Finally, noninvasive testing, such as echocardiogra-
phy, can be used to exclude thrombosis or endo-
carditis when invasive studies may be
contraindicated.6 Perhaps most importantly, hemo-
dynamically significant valve dysfunction of surgi-
cally implanted and transcatheter bioprosthetic
valves identified by echocardiography correlates with
the composite outcome of death from any cause or
aortic reintervention.4-8

ADVANTAGES OF INVASIVE HEMODYNAMIC

MEASUREMENT. Despite the listed advantages of
echocardiography, there are also limitations (Table 1).
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TABLE 1 Advantages and Limitations of Echocardiographic and Hemodynamic

Measurements of Bioprosthetic Aortic Valve Replacement Prostheses

Echocardiography Hemodynamic Assessment

Advantages

Safe, noninvasive Recording incorporates contributions of
all valve, flow, and fluid components

Widely accessible Independent of incidence angle of
ultrasound beam

Assessment during normal loading conditions

Ability to do serial, repeat, and exercise
measurements

Can obtain multiple, confirmatory parameters
to improve diagnostic accuracy

Can differentiate between stenosis and
regurgitant contributions to measures

Measures correlate with outcomes

Limitations

Fails to account for flow acceleration, viscous
forces

Invasive

May not account for proximal LV pressure,
pressure loss recovery

Immediate post-TAVR measures not
reflective of normal flow state and
subsequent valve adaption

Requires alignment of Doppler probe to flow to
record maximal gradient

Lack of outcome data

Fluid-filled catheters may introduce error
caused by inaccurate zeroing or
catheter calibration

Catheters with multiple side-holes may
not capture the maximal gradient

Cardiac output measures not validated in
elderly and post-AVR

AVR ¼ aortic valve replacement; LV ¼ left ventricle/ventricular; TAVR ¼ transcatheter aortic valve replacement.
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Echocardiography calculates a velocity-derived
transvalvular gradient through application of a
simplified version of the Bernoulli equation.32 This
equation omits the contribution of flow acceleration,
viscous forces, proximal left ventricular (LV) velocity,
and pressure recovery on the derived gradient.33

Conversely, invasive measurement provides a direct
assessment of transvalvular gradients and is the net
pressure gradient across the aortic valve that ac-
counts for valvular, flow, and fluid hemodynamic
considerations. Immediately after transcatheter
aortic valve replacement (TAVR), pressure gradient
differences between echocardiography and invasive
measurements suggest that these modalities are not
interchangeable.27 Invasive measurements, however,
can also be limited by methodological considerations,
including the lack of end-hole catheters to capture
the maximal gradient and correction of sheath pres-
sures for time delay and systolic augmentation
caused by reflected waves.34

REASONS FOR DISCORDANCE OF ECHOCARDIOGRAPHIC

AND HEMODYNAMIC MEASUREMENTS. The discordance
between echocardiographic and invasive gradients
occurs following both TAVR and surgical aortic valve
replacement (SAVR).27,28,35-37 There are a number of
reasons why echocardiographic measures of mean
transvalvular gradients may be higher than invasive
measurements immediately following valve replace-
ment in the setting of normal bioprosthetic valve
function (Table 2). These can be classified into several
major categories: 1) principles of fluid mechanics and
pitfalls of the modified Bernoulli equation; 2) vari-
ability of the contraction coefficient (ratio of effective
to anatomic valve orifice area) depending on the
shape of the orifice; 3) pressure recovery distal to the
vena contracta in a tubular structure; and 4) technical
aspects of measurement, including temporal and he-
modynamic variability.

PITFALLS OF THE MODIFIED BERNOULLI EQUATION. The
Bernoulli equation was designed to derive trans-
stenotic gradients from velocity in the presence of
laminar, steady flow with a single level of stenosis.
The stenotic pressure gradient is related to 3 forces:
convective acceleration, which is the increase in
blood-flow velocity when traversing a reduced aortic
valve area; flow acceleration (different from flow
convergence), which is the increase in blood-flow
velocity with ventricular contraction; and viscous
forces from blood viscosity and friction forces among
blood layers and against the aorta.32,33 In the modi-
fied (simplified) Bernoulli equation, the velocity-
derived gradient accounts only for convective accel-
eration. Additional fundamental assumptions include
Downloaded for Anonymous User (n/a) at Brazilian
2022. For personal use only. No other uses wit
no additional loss of pressure from viscous effects
(friction), a small contribution of flow acceleration at
any specified time point, and that the proximal ve-
locity is significantly smaller than the distal velocity.
Although the first assumption is for the most part
true, the second and third assumptions may not be
true in the setting of a nonrestrictive bioprosthetic
valve.33 Flow acceleration in a normal valve increases
because of the relatively large volume of blood and
may play a significant role in the overall pressure
gradient. Additionally, the proximal and distal ve-
locities are closer in magnitude, and thus, the prox-
imal LV velocity should be subtracted from the distal
velocity to calculate the true pressure gradient.30 This
is not often performed clinically, and thus the pres-
sure gradient reported following prosthetic valve
implantation is likely an overestimate of the true
transvalvular gradient.

The vena contracta is the point at which a jet has its
minimal effective area. When the fluid jet passes
through a sharp-edged orifice, the jet continues to
constrict for a certain length before expanding radi-
ally. This contraction of the jet or contraction coeffi-
cient is defined as the minimal area of the jet (ie,
effective orifice area [EOA]) divided by the anatomic
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
hout permission. Copyright ©2022. Elsevier Inc. All rights reserved.



TABLE 2 Summary of Reasons for Discordance Between

Echocardiographic and Invasive Hemodynamic Measurement of

Bioprosthetic Valve Function

Echocardiographic

Failure to align Doppler sector parallel to maximal velocity

Simplified Bernoulli equation fails to account for
a. Laminar/average flow with lower velocity adjacent to

vessel wall
b. Proximal LV velocity
c. Variability of contraction coefficient
d. Nonconvective forces of flow acceleration, viscosity, and

convective acceleration

Not corrected for pressure recovery

Invasive hemodynamic

Inaccuracies introduced by
a. Fluid-filled catheters
b. Use of pigtail instead of end-hole catheters
c. Improper positioning within LV and aorta

Timing of measurements immediately post-TAVR

Abbreviations as in Table 1.
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area of the orifice; ranges from 0.6 (abruptly nar-
rowed orifice) to 1.0 (gradually narrowed orifice); is
affected by the geometry of the orifice, flow rate, and
flow eccentricity; and likely differs based on the bio-
prosthetic valve design.35

PRESSURE RECOVERY DISTAL TO THE VENA CONTRACTA.

Pressure loss recovery is a hydrodynamic phenome-
non that occurs whenever blood encounters and exits
from a narrowed conduit (Figure 1). The maximal ve-
locity of blood flow and the calculated gradient occurs
at the vena contracta. Because of irrecoverable loss
from viscous effects, the pressure downstream from
the vena contract does not reach the original static
level pressure. Invasive measurements at the site of
the recovered pressure will be lower than the Doppler
measurement of the vena contracta pres-
sure gradient.38

Pressure loss recovery causes especially signifi-
cant differences between Doppler and catheter gra-
dients in the setting of high flow rates, small
ascending aorta diameter (<30 mm), highly eccentric
jets, and larger orifice size.4,36,39-41 In these settings,
it is likely that some discordance between Doppler
and invasive measurements of pressure gradient
may be related to pressure loss recovery. However,
in aortic stenosis, several studies have demonstrated
that the recovered pressure in absolute terms is
small and is not clinically relevant in patients with
low gradients (<25 mm Hg), normal flow, and aortas
larger than 3 cm diameter.40-42 Two in vitro studies
of TAVR prostheses compared echocardiographic
gradients with hemodynamics recorded with a
micromanometer-tip pressure catheter at different
flow rates and demonstrated that the gradients
Downloaded for Anonymous User (n/a) at Brazilian Society of Cardiology f
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measured by catheterization were lower than those
measured echocardiographically and were directly
related to flow, and that the contribution of pressure
recovery to the measured gradient is small.43,44

TECHNICAL ASPECTS OF MEASUREMENT. Inherent
in this discussion is the assumption of technically
accurate and appropriate methodology. Hahn et al17

from 3 echocardiographic core laboratories involved
in TAVR studies described the assessment of the
normal function of multiple iterations of TAVR pros-
theses and provided tables of expected valve hemo-
dynamics. Key technical aspects are specifically
delineated, including measurements of the neo-LV
outflow tract and pulsed wave Doppler velocity at
2 locations of the stent frame and standardized
calculations for stroke volume for both the balloon-
expandable and self-expanding prostheses. Hemo-
dynamic measurements must also be performed with
specific protocols. As frequently performed, post-
TAVR measurements with a pigtail catheter in the
left ventricle and aortic pressure from the side-arm of
a distal aortic sheath must include corrections for
time delay and systolic augmentation caused by re-
flected waves. In addition, fluid-filled catheters
generally lack the fidelity and frequency response
required to detect small differences in gradient,
including pressure recovery, over small distances
along the flow stream. The pressure gradient along
the LV outflow tract and pressure recovery in the
aorta occur over a limited zone, making the use of
pigtail catheters with multiple side-holes, which
average the pressure in and around these zones, less
suitable.38 One protocol for assessment of late post-
TAVR larger gradients with careful hemodynamics
as part of a clinical trial (NCT04827238) has been
proposed. Key elements of this protocol include an
intravenous infusion of normal saline to minimize the
effects of hypovolemia, careful levelling and zeroing
of 2 transducers, and the use of 2 pigtail catheters (1
catheter deep in the left ventricle and a second one
sampling multiple positions in the ascending aorta).

TIMING OF MEASUREMENTS. Differences in intra-
procedural transvalvular gradients and follow-up
gradients may be partly related to the hemodynamic
effects of anesthesia with lower echocardiographic-
derived transaortic gradients under anesthesia than
in nonsedated patients.45 This phenomenon has also
been observed immediately after TAVR.27,46 It may be
related to resolution of the effects of sedation/anes-
thesia, rapid pacing-induced ischemia with subse-
quent improvement in transaortic stroke volume and
flow, hypovolemia caused by the fasting state, as well
as improvement in systolic blood pressure and
rom ClinicalKey.com by Elsevier on August 24, 
ght ©2022. Elsevier Inc. All rights reserved.
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FIGURE 1 Heart Diagram Illustrating Pressure Loss Recovery in Aortic Stenosis

Velocity

B C DA

Pressure
(mm Hg)

LV

LV
Ao

A
B C D

Aorta

0

200

(A to D) Aortic flow velocity and left ventricular (LV) and aortic pressure (Ao) recordings during a pull back with a high-fidelity catheter with

2 laterally mounted manometer transducers spaced 5 cm apart and a velocity sensor located at the proximal transducer site in a patient with

severe aortic stenosis. Velocity increases and a pressure gradient appears as the catheter is withdrawn from the LV cavity (A) toward the

outflow tract (B and C). Maximal LV-aorta gradient coincides with the maximal velocity at the vena contracta (C). Further withdrawal of the

catheter (C to D) illustrates pressure recovery: the difference in peak systolic pressures recorded from the proximal sensor while lodged in

the vena contracta (C) and that recorded from the same sensor withdrawn further into the aortic root (D)—in this case, a “recovery” of

20 mm Hg. Reproduced with permission from Herrmann and Laskey.38
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systemic vascular resistance.27,41,46 This increase in
transvalvular gradients from immediately post-
procedure to discharge appears to affect patients with
smaller prostheses and with balloon-expandable
valves to a larger extent than self-expanding
valves.27,46 Although changes in flow may account
for some of the differences in gradients over time, the
rise in transvalvular gradients appears to be dispro-
portionate to the increase in stroke volume, and low-
flow state alone may not account for the lower
gradients immediately post-TAVR. There may also be
hemodynamic adaptation early postimplant (between
immediately postprocedure and postprocedure day 1)
Downloaded for Anonymous User (n/a) at Brazilian
2022. For personal use only. No other uses wit
that could differ depending on transcatheter heart
valve size or structure.46

In summary, the simplicity and availability of
echocardiography and the ability to obtain serial
measurements over time coupled with natural history
data confirming the correlation of echocardiographic
gradients with clinical outcomes support the
continued use of echocardiography for routine
assessment of valve function, while reserving inva-
sive measurements to settings before consideration
of interventions. Despite rigorous acquisition pro-
tocols, there may be differences in echocardiographic
and invasive measurements of gradients among valve
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
hout permission. Copyright ©2022. Elsevier Inc. All rights reserved.
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types, sizes, and hemodynamics at the time of mea-
surement.27,28,46 The pitfalls of the Bernoulli equa-
tion, a greater contraction coefficient for the balloon-
expandable valve, and other technical and timing
differences may explain some of these differences.

ISSUES RELATING TO SURGICAL VS

TRANSCATHETER BIOPROSTHESES AND

THE SMALL AORTIC ANNULUS

The choice of surgical heart valve (SHV) is a key
determinant of successful SAVR and postoperative
outcomes. For each valve, cardiac surgeons require
appropriate sizing information and guidance on
intended implant position to allow for optimal pros-
thesis choice. In addition, the aortic annulus is rarely
a perfect circle. Some biological SHVs feature an
inherent degree of sewing ring flexibility, whereas
other bioprostheses and all mechanical SHVs do not,
adding to the complexity required to maximize the
size of the prosthesis. The physical dimensions of
SHVs are related to their performance, but manufac-
turers often use nonuniform terminology to describe
the physical dimensions of their SHVs.9 The proper
interpretation of labeled valve size, defined in the
International Organization for Standardization (ISO)
standard as the “manufacturer’s designation of a
surgical heart valve substitute which indicates the
intended patient annulus diameter,” remains one of
the most challenging issues surrounding the labelling
and use of SHVs.47-49

Practically, labeled valve sizes represent tissue
annulus diameter ranges with the lower margin of
this range determined by the diameter of the largest
valve specific tubular sizer that fits the annulus. The
upper margin of this range is indirectly bordered by
the diameter of the largest sizer that does not fit.
However, as the margins of these tissue annulus
ranges were not defined in the corresponding ISO
standards, they can vary for different SHV models
having the same labeled valve size.21

The presence of a small aortic annulus represents a
particular clinical challenge in patients with aortic
stenosis, including in women who account for up to
90% of these patients.10,11,50,51 Prosthesis-patient
mismatch (PPM) occurs more often in these pa-
tients.2,5 In SAVR, severe PPM is associated with
decreased survival, worse quality of life, and early
structural valve degeneration.1,2,52 In surgical series,
a small annulus has been commonly defined as one
that would not accommodate a prosthesis
size $21 mm or an aortic annulus #23 mm measured
either by echocardiography or intraoperatively by
direct sizing.50 More recently, an annular area defined
Downloaded for Anonymous User (n/a) at Brazilian Society of Cardiology f
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by 3-dimensional computed tomography (CT)
of <400 mm2 51 or <430 mm2 53 has been proposed for
defining a small annulus.

A small aortic annulus is associated with poorer
outcomes after surgical aortic valve replacement,
with increased mortality, ischemic cardiovascular
events, and stroke.10,11 Surgical strategies to improve
valve hemodynamics and clinical outcomes include
aortic root enlargement, stented prostheses implan-
ted in a supra-annular position, stentless and
sutureless bioprostheses, and the Ross procedure
(autograft replacement).50 Supra-annular positioning
can improve hemodynamics compared with intra-
annular prostheses, but in surgical series, this has
not translated into significant benefits in long-term
survival or the prevention of major adverse valve-
related events. Similar comparisons between trans-
catheter valves are limited by differing non-
hemodynamic competing risks for mortality, such as
paravalvular aortic regurgitation and permanent
pacemakers.19,54 Finally, different implantation
techniques (ie, U-stitches reinforced with or without
pledgets, single interrupted stitches without pled-
gets, hemi-continuous sutures) have been suggested
to improve hemodynamic performance.55

Sutureless aortic valve implantation has received
recent interest, because of the rapid development of
transcatheter valve technology. Two such devices,
the Sutureless Perceval-S (LivaNova) and rapid-
deployment Intuity (Edwards Lifesciences) bio-
prosthesis, provide good and similar early clinical and
hemodynamic outcomes. The Perceval-S valve im-
plantation leads to shorter cross-clamp and cardio-
pulmonary bypass times, whereas the Intuity valve
implantation may provide lower transaortic
gradients.56

Root enlargement can also increase the size of a
surgical bioprosthesis implanted in a small
annulus57,58; however, the results have been contra-
dictory.59-61 The Ontario study utilizing administra-
tive data showed that aortic root enlargement was not
associated with short-term mortality,60 whereas the
STS Adult Cardiac Surgery Database study showed
that root enlargement was associated with increased
30-day mortality.61 The risks of root enlargement
include longer cardiopulmonary bypass time,
bleeding from the suture line, and potential for mitral
regurgitation. In the STS study, the root was enlarged
in only 2.9% of all SAVR performed.

In younger and particularly active patients with
long life expectancies, the Ross procedure, which
involves an aortic root replacement with a pulmonary
autograft, has demonstrated excellent long-term
outcomes and durability in experienced centers.62,63
rom ClinicalKey.com by Elsevier on August 24, 
ght ©2022. Elsevier Inc. All rights reserved.



TABLE 3 Definitions for Prosthesis-Patient Mismatch

Severe, cm2/m2 Moderate, cm2/m2

ASE guidelines26 <0.65 0.65-0.85

VARC-2105 <0.65 0.65-0.85

BMI $30 kg/m2 <0.60 0.60-0.70

EACVI recommendations80 <0.65 0.65-0.85

BMI $30 kg/m2 <0.55 0.55-0.70

VARC 36 #0.65 0.66-0.85

BMI $30 kg/m2 <0.55 0.55-0.70

ASE ¼ American Society of Echocardiography; BMI ¼ body mass index;
EACVI ¼ European Association of Cardiovascular Imaging; VARC ¼ Valve Academic
Research Consortium.
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The Ross procedure is ideal in young and active pa-
tients with small annulus, since the aortic valve
prosthesis is a living substitute, with lower risk of
structural valve degeneration and endocarditis than a
xenograft or homograft bioprosthesis.

The lack of a sewing ring in transcatheter valve
prostheses may allow for slightly better hemody-
namics with TAVR compared with SAVR.51,64-67 In the
most recent PARTNER 3 trial in patients with severe
aortic stenosis and low surgical risk, transvalvular
gradients, valve areas, percentage of severe PPM,
regression of LV hypertrophy, and evolution of LV
systolic function were similar with all sizes of
balloon-expandable transcatheter valves compared
with SAVR in short-term follow-up.68 In contrast,
TAVR using a self-expanding valve resulted in better
hemodynamics and a reduced incidence of PPM
compared with surgery for annuli with diameter
smaller than 26 mm.65 In a propensity-matched
analysis from the German Aortic Valve Registry,
valve hemodynamics of SAVR with current-
generation rapid-deployment valves (Intuity and
Perceval) were compared with TAVR. The authors
observed a hemodynamic advantage of the Intuity
prosthesis, with less residual gradients and less aortic
regurgitation compared with Sapien 3. In contrast,
the Perceval prosthesis had the highest residual gra-
dients, whereas the Evolut TAVR prosthesis was
associated with the lowest gradients of all analyzed
valves.69

DEFINITIONAL ISSUES OF BIOPROSTHETIC

VALVE STRUCTURAL DETERIORATION,

DYSFUNCTION, AND FAILURE

Bioprosthetic valve dysfunction and failure may be
caused by structural valve dysfunction (SVD) or non-
SVD and may have an impact on LV recovery, symp-
toms and quality of life, valve durability, cardiac
rehospitalization, and mortality following AVR.6,12,70

Non-SVD includes PPM and paravalvular aortic
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regurgitation. The durability of bioprosthetic valves
may be limited because of SVD. Midterm (5-8 years)
durability of the new generation of transcatheter
valves appears to be similar to that of surgical valves.
However, it is still unknown whether transcatheter
valves will have similar long-term durability as sur-
gical valves.

Recent expert consensus statements redefined SVD
based on identification of structural and hemody-
namic valve deterioration at echocardiographic
follow-up.6,71,72 The definitions of bioprosthetic valve
dysfunction and failure are presented in detail in a
companion paper.73 Key points regarding these defi-
nitions include the following:

1. Definitions of SVD based on valve-related reinter-
vention or death underestimate the true incidence
of SVD.4

2. Definitions solely based on the presence of a high
transprosthetic gradient (>20 mm Hg) at a given
echocardiogram during follow-up overestimate the
incidence of SVD. A high gradient may occur in the
case of a patient with a normally functioning bio-
prosthetic valve and severe PPM.

3. Definitions of SVD should therefore include per-
manent structural changes to the leaflets (or stent)
and irreversible hemodynamic valve deterioration,
including as a result of valve thrombosis or
endocarditis.73

PROSTHESIS-PATIENT MISMATCH

CONCEPT AND DEFINITION OF PPM. PPM was first
described by Rahimtoola74 in 1978. It is defined by an
EOA of the prosthetic valve that is too small in rela-
tion to a patient’s body size, resulting in a high re-
sidual transvalvular pressure gradient and/or
insufficient cardiac output, particularly with exer-
cise.75 A high residual gradient (mean
gradient $20 mm Hg) on transthoracic echocardiog-
raphy is a red flag for PPM. However, a high trans-
prosthetic gradient may also be related to a high flow
state, aortic regurgitation, or acquired prosthetic
valve stenosis caused by valve thrombosis or SVD.
Similarly, because the transvalvular gradient is flow
dependent, a low gradient does not necessarily
exclude the presence of PPM, and the gradient may be
low even in the presence of PPM.

PPM is generally defined and categorized on the
basis of the indexed effective orifice area (EOAi), ie,
the EOA divided by the patient’s body surface area.
Initially, the cutoff values of EOAi that were recom-
mended to define PPM in the aortic position
were <0.85 cm2/m2 for moderate and <0.65 cm2/m2

for severe PPM25 (Table 3). However, it has been
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
hout permission. Copyright ©2022. Elsevier Inc. All rights reserved.



TABLE 4 Summary of Reasons for Discrepancy in Effects of

Severe PPM on Outcomes

Reasons why the reported incidence of PPM varies after AVR

Method of EOA calculation (measured vs predicted)

Correction or not for obesity

Timing of measurement (immediate vs later)

Effect of underlying flow state

Method of gradient determination (echocardiographic vs
hemodynamic)

Reasons why the effects of severe PPM on outcomes are conflicting

Measurements and calculations differ as above

Incomplete correction for confounding and competing outcome
variables

Paravalvular aortic regurgitation

Low flow state

Older patients or other survival limitations

Underpowered analyses

Limited follow-up (1 year may not be sufficient)

AVR ¼ aortic valve replacement; EOA ¼ effective orifice area; PPM ¼ prosthesis-
patient mismatch.
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suggested that in obese patients (ie, body mass
index $30 kg/m2), the use of these EOAi cutpoints
may result in an overestimation of the incidence and
severity of PPM.6,76 Although the cardiac output re-
quirements in obese patients may be greater, they
exercise less, and cardiac output does not increase
linearly with size and may depend on age as well as
the ratio of fat-free muscle mass to fat mass.77

Outcome data in surgery have shown an increased
effect of severe PPM on mortality both with a higher78

and lower79 body mass index and no interaction of
severe PPM and body mass index was observed in the
largest TAVR study to date5 (Table 4). Thus, the use of
an obesity correction for severe PPM remains an area
of controversy, despite recent recommendations for
the application of a lower cutoff value of EOAIs in
these patients: <0.70 cm2/m2 for moderate
and <0.55 cm2/m2 for severe PPM6,80 (Table 3).

CALCULATION AND MEASUREMENT OF PPM. In
addition to the definitional issues described in the
previous text, different methodologies for the calcu-
lation of PPM have been suggested: 1) the measured
method using the EOAi calculated at predischarge or
30-day transthoracic echocardiogram using the con-
tinuity equation; and 2) the predicted method using
the EOAi obtained from the published normal refer-
ence values of EOA for each model and size of pros-
thetic valve.74,76,80 The measured EOAi may
overestimate the incidence and severity of PPM
because it also includes “pseudo-severe” PPM caused
by low-flow state.81 In this case, the EOAi measured
by echocardiography may be “pseudo-severe,” lead-
ing to an erroneous conclusion that severe PPM is
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present (Figure 2). An important issue is whether a
low EOAi in this situation, not necessarily because of
physical valve characteristics, has the same implica-
tions for patient outcomes because low-flow pre- and
post-TAVR has been independently associated with
adverse outcomes.82,83 To overcome this issue of
pseudo-severe PPM, it is suggested to perform EOA
measurements at 30 days post-AVR when the highly
prevalent low-flow state during and early after the
procedure has resolved or to use the predicted EOAi
instead.76,80 In normal flow conditions, the measured
and predicted indexed EOAi should be consistent and
yield concordant grading of PPM severity. Trans-
thoracic echocardiography may also underestimate
LV outflow tract diameter and area and thus over-
estimate the incidence and severity of PPM. For this
reason, the aortic annulus area measured by CT
before or after the procedure may be used to calcu-
late a “hybrid” (ie, CT-Doppler) EOAi. This method
systematically yields a lower incidence of PPM, but
has not been shown to provide a better association
with clinical outcomes vs PPM measured
by echocardiography.84

To obtain an accurate predicted EOAi, it is essential
to know the exact model and label size of the bio-
prosthetic valve and to use reliable sources for the
normal reference values of EOA for both SAVR79 and
TAVR17 valves. However, the application of predicted
values in a general population to measured values in
an individual patient may also introduce errors
caused by specific characteristics, such as the actual
valve size after deployment (under and over expan-
sion), effects of noncircularity, and paravalvular
regurgitation. Patient factors that have been associ-
ated with severe PPM include a small aortic annulus,
women, valve-in-valve procedures, small valve
prostheses, older age, lower ejection fraction, non-
White and Hispanic, and atrial fibrillation.2,5,34,85 To
enhance the definition, prediction, and prevention of
PPM following AVR, a task force led by ISO and the
Heart Valve Collaboratory has been launched to
establish accurate and reliable normal reference
values of EOAs for each given model and size of sur-
gical or transcatheter bioprosthesis using a robust and
standardized methodology as described in the
following text.

INCIDENCE AND IMPACT ON OUTCOMES OF PPM

FOLLOWING SAVR. The incidence of PPM ranges
from 20% to 70% and that of severe PPM from 2% to
20% following SAVR.2,78,85 Patients with severe aortic
PPM have poorer functional class and worse exercise
capacity, reduced regression of LV hypertrophy,
more adverse cardiac events, more cardiac
rom ClinicalKey.com by Elsevier on August 24, 
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FIGURE 2 Algorithm for the Diagnosis and Classification of PPM

<20 mm Hg

≤0.65 cm2/m2 or
≤0.55 cm2/m2 if obese

≤0.65 cm2/m2 or
≤0.55 cm2/m2 if obese

Low flow Normal flow

Measured EOAi by TTE
at predischarge or 30 days

Predicted EOAi

Measured EOAi by TTE
at predischarge or 30 days

Mean gradient by TTE

>0.65 cm2/m2 or
>0.55 cm2/m2 if obese

Nonsevere or pseudosevere PPM
consider errors in TTE measures

>0.65 cm2/m2 or
>0.55 cm2/m2 if obese

≥20 mm Hg

≤0.65 cm2/m2 or
≤0.55 cm2/m2 if obese

True severe PPM

Low-flow state?
SVi <35 ml/m2

Consider
high-flow state

The figure depicts a proposed algorithm for differentiating between true severe prosthesis-patient mismatch (PPM) defined by the effective orifice area

indexed to body surface area (EOAi) with a measured mean echocardiographic gradient >20 mm Hg and nonsevere or pseudosevere PPM caused by the

presence of a low gradient and/or a low flow state. In the latter case of low flow that is often present early after transcatheter and surgical aortic valve

replacement, use of the predicted EOAi may be more suitable. SVI ¼ stroke volume index; TTE ¼ transthoracic echocardiogram.
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rehospitalizations, increased risk of structural valve
deterioration, shorter valve durability, and increased
risk of both perioperative and late mortality after
SAVR when compared with patients who do not have
PPM1,2,52,78,85 (Supplemental Table 1). Greater clinical
impact of severe and even moderate PPM is observed
in specific groups of patients such as those with pre-
existing LV dysfunction or hypertrophy, those with
concomitant mitral regurgitation, and in those <65-70
years of age.2,78,85

INCIDENCE AND IMPACT ON OUTCOMES OF PPM IN

TAVR VS SAVR. PPM is less frequent with TAVR
compared with SAVR.3,66,86 The vast majority of SAVR
studies have used the predicted EOAi to examine the
incidence and impact of PPM on clinical outcomes,2,78

whereas TAVR studies have used both predicted and
measured EOAi.5,76 Although some TAVR prostheses
may have a more favorable hemodynamic profile than
surgical prostheses, the difference in the method
used to identify and grade PPM may also explain the
discrepancies in PPM incidence and impact reported
between TAVR and SAVR series (Table 4). In most
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trials, the incidence of severe PPM was lower with
TAVR compared with SAVR. The association of severe
PPM with clinical outcomes occurs after SAVR and
TAVR,5,34,87 but was generally more significant with
SAVR (Supplemental Table 1). This may be related, in
part, to the fact that in TAVR series, the use of the
measured EOAi may have resulted in an over-
estimation of incidence and severity of PPM in pa-
tients with a low-flow state. Alternatively, the
different effects on outcomes may be caused by the
low incidence of severe PPM in small studies,
competing and confounding factors that affect out-
comes, short length of follow-up, and underpowering
for outcome events (Table 4).

HIGH RESIDUAL GRADIENTS AFTER AVR

ASSESSMENT. After SAVR or TAVR, comprehensive
transthoracic echocardiography should be under-
taken early after hospital discharge to assess valve
hemodynamics.23,26,29 LV ejection fraction and global
longitudinal strain, along with any regional areas of
LV systolic dysfunction, should be reported along
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
hout permission. Copyright ©2022. Elsevier Inc. All rights reserved.
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FIGURE 3 Correlation Between Mean Transvalvular Aortic Gradient and Indexed Orifice Area
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with LV mass calculation.88 Diastolic function
assessment is challenging post-AVR because of teth-
ering of the basal ventricular septum by the aortic
valve prosthesis, along with other limitations such as
bundle branch blocks, atrial arrhythmias, and atrio-
ventricular block (ventricular pacing), all of which are
more likely post-AVR.

Echocardiographic measures post-AVR should
include 4 key components: motion of the AVR leaf-
lets, peak aortic valve velocity, mean gradient, and
EOA.89 Each component should be assessed in the
context of LV systolic function, transvalvular flow,
ascending aortic dimensions, and arterial blood
pressure. The presence and severity of PPM should be
systematically assessed. In PPM, the peak aortic valve
velocity and mean aortic valve gradient are generally
high immediately after implantation (Figure 3) and
remain abnormally elevated, whereas structural valve
deterioration is associated with rising gradients over
time. The pathophysiology of PPM and structural
valve deterioration behave similarly to native aortic
stenosis, with persisting LV hypertrophy and diastolic
dysfunction and increased risk of heart failure
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hospitalization and mortality.8,90 In this regard and
as described in the previous text, understanding the
relationship between gradient, flow, and the calcu-
lation of severe vs pseudo-PPM as well as the conse-
quences of high gradient and low flow on outcomes is
essential (Figure 2, Table 3).

EFFECT OF IMPAIRED VALVULAR HEMODYNAMICS

POST-AVR. Impaired valvular hemodynamics refers
to consistently elevated transvalvular gradients, a
hemodynamic state that may be caused by
obstruction at the level of the valve or PPM.8,74,91

Valve obstruction may occur in the setting of SVD,
characterized by restricted leaflet motion and pro-
gressively worsening gradients, or valve design-
related (eg, some stented prostheses).71-73 Impaired
valve hemodynamics post-AVR may behave like
native aortic stenosis and may worsen over time,
with clinical consequences including persistent LV
hypertrophy, impaired coronary flow reserve, dia-
stolic dysfunction, and symptomatic heart failure
with a higher risk of hospitalization and subse-
quent mortality.4,91,92
rom ClinicalKey.com by Elsevier on August 24, 
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FIGURE 4 Outcomes With IVH Following Aortic Valve Replacement
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Studies of native and post-AVR stenosis have
confirmed a strong relationship with mortality for a
smaller EOA as well as a higher transvalvular
gradient (Figure 4). Progression of elevated gradi-
ents over time depends on the underlying cause,
with bioprosthetic valve degeneration tending to
deteriorate more quickly than PPM. Native valve
aortic stenosis follows a steep age gradient, with
progressive LV hypertrophy, diastolic dysfunction,
and pulmonary hypertension occurring in parallel
with increased mortality risk.93-95 Impaired valve
hemodynamics following AVR follows a similar tra-
jectory, with the gradient threshold at which mor-
tality rises being above 20 mm Hg.8 This mortality
threshold is remarkably similar to native valve aortic
stenosis and persisted after correction for EOA
(Figure 4).
CONSEQUENCES AND CLINICAL APPROACH TO

ADVERSE HEMODYNAMICS POST-AVR. Adverse
valve hemodynamics with elevated residual gradients
after aortic valve replacement are associated with
mortality primarily after SAVR, with conflicting data
after TAVR, as described in the previous text, as well
as with early structural valve degeneration.8,96
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Residual physiological stenosis is particularly rele-
vant in physically active, often younger, individuals
as well as those with large body mass indexes needing
to maintain a certain level of metabolic demands.
Anatomically, patients with a small aortic root/
annulus and smaller implanted bioprotheses have the
highest risk of residual elevated gradients. Random-
ized trials have demonstrated larger EOAs and lower
mean echocardiographic gradients for supra-annular
self-expanding prostheses compared with balloon-
expandable, mechanically expandable, and intra-
annular self-expanding prostheses.54,97-99

Clinically, these patients may have less improve-
ment after aortic valve replacement. Echocardiogra-
phy would typically show a normally functioning
bioprosthesis with no evidence of leaflet thrombosis,
thickening, or degeneration, but elevated trans-
valvular gradients. Such patients must be differenti-
ated from those with residual diastolic function
abnormalities and normal valve gradients and those
with other comorbidities.

In patients with increased gradients by echocardi-
ography on mid- and long-term follow-up, additional
imaging is recommended to evaluate for valve leaflet
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
hout permission. Copyright ©2022. Elsevier Inc. All rights reserved.



CENTRAL ILLUSTRATION Approach to the Patient With a High Gradient Post–Aortic Valve Replacement
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Herrmann HC, et al. J Am Coll Cardiol. 2022;80(5):527–544.

AVR ¼ aortic valve replacement; c/w = consistent with; echo ¼ echocardiographic; EOA ¼ effective orifice area; DVI ¼ Doppler velocity index; HALT ¼ hypoattenuated

leaflet thickening; LVOTO ¼ left ventricular outflow tract obstruction; PPM ¼ prosthesis-patient mismatch; RLM ¼ reduced leaflet motion.
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structural change or thrombus. In a small study of
patients with increasing echocardiographic gradients
to $20 mm Hg at midterm follow-up following TAVR
and with no evidence of structural valve changes on
CT angiography, concomitant echocardiographic and
invasive aortic valve assessment have demonstrated
invasive gradients <20 mm Hg in many patients.100

This finding suggests a role for invasive confirma-
tion before consideration for aortic valve reinterven-
tions. As such, echocardiography and catheterization
should be viewed as complimentary and not
competitive modalities following TAVR.

The approach to the patient post-AVR with a high
mean echocardiographic gradient (eg, $20 mm Hg)
requires integration of clinical assessment, physical
examination, and the echocardiographic and/or
additional imaging findings (Central Illustration).
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First, the echocardiographic gradient should be
confirmed, and the quality of the measurement
assessed to ensure that it is reproducible. In addition,
the EOA or Doppler velocity index should be
measured to confirm that the gradient is associated
with a reduced expected valve area. If the mean
gradient, EOA, or Doppler velocity index have
changed from baseline measures, the patient should
be assessed for leaflet thrombosis and reduced leaflet
motion with additional imaging modalities (eg,
transesophageal echocardiography, 4-dimensional CT
angiography), and if this diagnosis is confirmed,
consideration should be given for anticoagulation
therapy. The patient’s clinical status, including signs
or symptoms of heart failure, should guide the need
for further investigation or intervention. Although
studies have correlated a high residual gradient with
rom ClinicalKey.com by Elsevier on August 24, 
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increased mortality,4,6-8 it should be recognized that
the gradient should be considered in the context of
flow measurement, the potential need for invasive
hemodynamic confirmation, and other causes for
high flow. Finally, the potential options for reinter-
vention (including both surgical and transcatheter
ones) and the risks of reintervention should be dis-
cussed along with the patient’s preferences with
shared-decision making (Central Illustration).

EVIDENCE GAPS AND STEPS FORWARD

INTERNATIONAL EFFORTS ON SURGICAL VALVE

LABELING AND SIZING. Suboptimal selection of a
valve prosthesis for a given patient could be a
contributing factor to high gradients and PPM post-
AVR. To explore solutions to various controversies
surrounding the sizing and labeling of surgical heart
valves and to facilitate intraoperative and post-
operative comparison of different valves, a valve la-
beling task force with representatives from multiple
surgical societies, cardiologists, engineers, regulatory
bodies, the ISO Cardiac Valves Working Group, and
major valve manufacturers was convened in 2018.21

Subsequently, in a consensus document, the task
force recommended the use of standardized valve
charts by the manufacturers to present essential in-
formation on surgical heart valve characteristics,
including the physical dimensions, implant position,
and hemodynamic performance of an SHV.9

In parallel to the work by the valve labeling task
force, the ISO Cardiac Valves Working Group started to
develop recommendations on surgical valve sizing and
labeling. This ISO group comprises representatives of
the heart valve device manufacturers, independent
subject matter experts (clinicians, veterinarians, and
engineers), and regulatory bodies and is tasked with
developing and updating international standards on
the evaluation of heart valve devices, which are widely
followed by industry and global regulators.47-49 This
group ultimately recommended that the outer
container for an SHV include a label in diagrammatic
and/or tabular form with the following items:

� Intended valve to be replaced;
� Inflow orifice diameter;
� Effective orifice diameter (a virtual diameter

derived from benchtop steady forward flow EOA
that serves as an indicator of size of the flow pas-
sage is inside a replacement heart valve device);

� Valve housing external diameter.

Once implemented, these valve charts will make
information on the valve characteristics more readily
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available to the implanting surgeons and facilitate
intraoperative and postoperative comparison of
different valves. Importantly, no such valve stan-
dards for sizing and labeling have been proposed for
transcatheter heart valves, which represents a
reasonable and necessary next step, as the prolifera-
tion of new and iterative transcatheter valve designs
become commercially available in the future.
ISSUES ON WHICH NEW TRIALS SHOULD FOCUS.

Despite the revolutionary change in the management
of severe symptomatic aortic stenosis provided by the
technology advances and clinical evidence support-
ing TAVR use in many clinical circumstances, there
remain unresolved issues that require further inves-
tigation. These include the following: 1) the lifelong
journey of valvular heart disease, especially with
TAVR extension to younger patients and the expec-
tation of multiple sequential procedures; 2) manage-
ment of bicuspid aortic valve disease (often in
younger patients and with complex valve and aorta
anatomies); 3) avoidance of important procedure-
related complications affecting clinical outcomes
(stroke, paravalvular regurgitation, conduction ab-
normalities, and vascular events); and 4) consider-
ations that may have late consequences, such as valve
leaflet thickening and/or thrombosis, coronary
obstruction, and commissural alignment. Herein, we
have limited our discussion to hemodynamics and
valve durability.

As described in the previous text, patients with a
small native annulus and those with a failing small
surgical valve receiving a small bioprosthesis are at
the highest risk for residual gradients and PPM. These
patients are typically female, often under-
represented in clinical trials, and infrequently
offered surgical solutions, such as aortic root
enlargement. There are several ongoing and planned
clinical trials aimed at addressing these issues.

The ongoing VIVA (Transcatheter Aortic Valve
Replacement Versus Surgical Aortic Valve Replace-
ment for Treating Elderly Patients with Severe Aortic
Stenosis and small Aortic Annuli; NCT03383445)
randomized trial compares SAVR and TAVR in 300
patients with severe aortic stenosis and a small
annulus, defined as mean aortic annulus
diameter <22 mm. The primary endpoint of this trial
is valve hemodynamics (severe PPM and/or $ mod-
erate aortic regurgitation) as evaluated by echocar-
diography at 2-month follow-up.

A recent small randomized multicenter study
compared balloon-expandable and self-expanding
TAVR prostheses for patients with failed small
(#23 mm) surgical valves (NCT03520101).101 A total of
 Society of Cardiology from ClinicalKey.com by Elsevier on August 24, 
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98 patients were randomized with no differences in
clinical outcomes at 30 days. The mean echocardio-
graphic gradient was significantly lower with self-
expanding valves compared with balloon-expanded
valves (15 mm Hg vs 28 mm Hg), with a trend to-
ward a lower rate of severe PPM. Longer follow-up
will be needed to determine the potential clinical
impact of the observed differences in valve
hemodynamics.

The SMART (Small Annuli Randomized To Evolut
or SAPIEN Trial; NCT04722250) was designed to
compare the performance of the 2 most widely
available commercial TAVR devices in patients with
symptomatic severe native aortic stenosis with a
small aortic valve annulus undergoing transfemoral
TAVR.53 Planned enrollment is approximately 700
patients at 90 international sites, and the primary
composite clinical endpoint includes mortality,
disabling stroke, or heart failure hospitalization at
12 months. A coprimary valve function composite
endpoint is defined as bioprosthetic valve dysfunc-
tion (hemodynamic structural and nonstructural
valve dysfunction (severe PPM, $ moderate aortic
regurgitation, thrombosis, endocarditis, and aortic
valve reintervention) at 12 months. An exercise sub-
study as well as long-term follow-up to assess dura-
bility is planned.

Pilot data for the DISCORDANCE TAVR trial
(NCT04827238) comparing echocardiographic and
hemodynamic gradients between 2 months and 4
years post-TAVR was recently published.100 An
extension of this valve gradient study to include
simultaneous assessments immediately after balloon-
expandable TAVR and in follow-up for patients with
echocardiographic mean gradients >20 mm Hg will be
part of the COMPLETE TAVR study, a 4,000-patient
international randomized trial exploring manage-
ment alternatives of concomitant coronary artery
disease after TAVR.

Finally, studies of bioprosthetic valve durability
utilizing modern-era serial echocardiography assess-
ments will be critical for management of younger
patients with an extended expected lifespan and to
make comparative decisions between surgical and
transcatheter bioprosthetic heart valves. Currently,
U.S. Food and Drug Administration–approved clinical
trials of transcatheter valves in intermediate and low
surgical-risk patients require at least 10 years of
clinical and echocardiography follow-up, although
this is not typically required for new surgical bio-
prostheses. The need for long-term follow-up is
emphasized in the following circumstances: 1) impact
of early (in the first year) valve leaflet thickening/
thrombosis on subsequent structural valve
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deterioration; 2) importance of commissural align-
ment on coronary access and valve durability; 3)
assessment of new polymeric, modified bio-
prosthetic, and regenerative leaflet materials102; 4)
effects of novel preprocedural multimodality imag-
ing103 to improve the lifetime management of pa-
tients with aortic stenosis; and 5) assessment of novel
pharmacotherapy approaches to delay the progres-
sion of native calcific aortic stenosis or to diminish
deleterious pathologic LV remodeling.104

SUMMARY AND CONCLUSIONS

Impaired functional performance of bioprosthetic
aortic valves is associated with adverse patient out-
comes. The assessment of valve performance by he-
modynamic assessment is complicated by the lack of
standardization for sizing, labeling, definitions, and
measurement techniques. Echocardiography remains
the standard methodology because of its ease of
performance, widespread availability, ability to do
serial measurements over time, and correlation with
outcomes. Nonetheless, both theoretical and tech-
nical limitations may require the need for invasive
hemodynamic confirmation in selected cases.

Surgical bioprostheses are particularly subject to
sizing and labeling disparity. In addition, their he-
modynamics are influenced not only by the prosthesis
design, but also by implantation techniques. Trans-
catheter valves generally have more favorable he-
modynamic profiles, but differences among TAVR
devices exist. Definitions for bioprosthetic valve
deterioration, dysfunction, and failure as well as for
PPM are still evolving. Nonetheless, severe PPM and
high residual gradients after surgical and trans-
catheter AVR are associated with adverse outcomes
and reduced quality of life and should be avoided
when possible.

Management of high AVR gradient requires inte-
gration of the patient’s clinical status, physical ex-
amination, and multimodality imaging in addition to
complex shared patient decisions regarding the
treatment options. Future efforts to standardize
prosthesis sizing and labelling for both surgical and
transcatheter valves are underway, as are clinical
trials to better understand the consequences of
adverse hemodynamics.
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