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BACKGROUND Disease progression in patients with mild-to-moderate aortic stenosis is heterogenous and requires

periodic echocardiographic examinations to evaluate severity.

OBJECTIVES This study sought to explore the use of machine learning to optimize aortic stenosis echocardiographic

surveillance automatically.

METHODS The study investigators trained, validated, and externally applied a machine learning model to predict

whether a patient with mild-to-moderate aortic stenosis will develop severe valvular disease at 1, 2, or 3 years. Demo-

graphic and echocardiographic patient data to develop the model were obtained from a tertiary hospital consisting of

4,633 echocardiograms from 1,638 consecutive patients. The external cohort was obtained from an independent tertiary

hospital, consisting of 4,531 echocardiograms from 1,533 patients. Echocardiographic surveillance timing results were

compared with the European and American guidelines echocardiographic follow-up recommendations.

RESULTS In internal validation, the model discriminated severe from nonsevere aortic stenosis development with an

area under the receiver-operating characteristic curve (AUC-ROC) of 0.90, 0.92, and 0.92 for the 1-, 2-, or 3-year

interval, respectively. In external application, the model showed an AUC-ROC of 0.85, 0.85, and 0.85, for the 1-, 2-, or

3-year interval. A simulated application of the model in the external validation cohort resulted in savings of 49% and 13%

of unnecessary echocardiographic examinations per year compared with European and American guideline recommen-

dations, respectively.

CONCLUSIONS Machine learning provides real-time, automated, personalized timing of next echocardiographic

follow-up examination for patients with mild-to-moderate aortic stenosis. Compared with European and American

guidelines, the model reduces the number of patient examinations. (J Am Coll Cardiol Img 2023;16:733–744)
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ABBR EV I A T I ON S

AND ACRONYMS

AS = aortic stenosis

AUC-PR = area under the

precision-recall curve

AUC-ROC = area under the

receiver-operating

characteristic curve

ML = machine learning
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A ortic stenosis (AS) is the most preva-
lent valve disease and an important
cause of morbidity and mortality.1

A patient with mild or moderate (stage B)
AS may eventually have severe valve
obstruction (stage C) and therefore will be
at increased risk of heart failure, syncope,
angina, or death.2 Once symptoms appear,
aortic valve replacement is the only treat-
ment capable of changing the natural history of
the disease and improving prognosis. The rate of
hemodynamic progression is heterogenous, and
the onset of clinical symptoms is variable. For
these reasons, it is recommended that all patients
with known AS should have periodic clinical and
echocardiographic evaluations at regular intervals,
and the interval length depends on the patient’s
valve stenosis severity.3-7 However, there is limited
knowledge on what constitutes an optimal echocar-
diographic follow-up interval. The current surveil-
lance schemes are different among geographic
regions, and all have Level of Evidence: C. Amer-
ican guidelines suggest echocardiography examina-
tion every 6 to 12 months for asymptomatic
severe AS, every 1 to 2 years for moderate AS,
and every 3 to 5 years for mild AS.3,6 These inter-
vals are different in European guidelines, which
recommend follow-up echocardiography every
6 months in cases of severe AS and once yearly
for mild and moderate AS.4,7

There is growing interest in precision medicine
techniques that can deliver personalized patient care.
In this sense, machine learning (ML) techniques are
able to predict patient outcomes reliably by using
individual patient observations.8,9 Although ML
models applied to AS can be found in the published
reports,10-12 none of these reports focus on follow-up,
nor have we found examples that apply artificial in-
telligence methodology when analyzing the optimal
time interval to perform an imaging follow-up ex-
amination for a chronic condition. However, there are
good examples of algorithms capable of real-time
monitoring follow-up recommendations in radiology
reports.13,14 Notwithstanding, the ML classifiers used
in our proposal are similar to other cardiovascular
disease risk prediction models showing higher per-
formance compared with conventional statistical
methods.15

The aim of this study was to develop 3 different
supervised ML models fed by echocardiographic
measurements of an AS patient and predict whether
severe AS would develop in this patient, as assessed
by follow-up echocardiography at 1, 2, or 3 years after
baseline examination. These models were applied in a
ded for Anonymous User (n/a) at Brazilian Society of Cardiology
. For personal use only. No other uses without permission. Copyri
system that recommends the time for the next follow-
up in new AS patients.

METHODS

The steps followed can be divided into data prepa-
ration, model training, model evaluation, and model
application, as summarized in Figure 1.

This study followed the PRIME (Proposed
Requirements for Cardiovascular Imaging-Related
Machine Learning Evaluation) checklist16 for
the development of ML models in cardiology
(Supplemental Table 1).

MACHINE LEARNING MODEL GENERATION. Training
cohort and data curation. The demographic and echo-
cardiographic data used to develop the model
were extracted from the archive system (IntelliSpace
Cardiovascular, Philips Healthcare) of the tertiary
University Hospital of Salamanca, Spain, and comor-
bidities were extracted from the hospital electronic
health records. The echocardiographic database
gathers raw tabular data from a total of 103,146
echocardiographic studies from 60,657 patients
screened between July 2007 and July 2019, from all
the multibrand echocardiographers of the cardiology
department (Philips, General Electric, and Toshiba).
To develop the ML model, we included all patients
with initial mild-to-moderate AS who had at least
2 periodic imaging assessments. Doppler echocardio-
graphic transaortic peak velocity was used for
defining severity of AS that was graded as mild from
2.0 to 2.9 m/s, moderate from 3 to 3.9 m/s, or severe
when peak velocity was $4 m/s.3,6 The intervals be-
tween visits were categorized as 1 year if the next
follow-up echocardiography was performed in the 6-
to 18-month interval, a 2 years in the 18- to 30-month
interval, and as 3 years in the 30- to 42-month inter-
val. Target labels for algorithm training were defined
by whether the patient had severe AS or not on each
of those intervals.

This training data set was composed of 92 de-
mographic and echocardiographic variables. Only
variables with at least 30% of nonmissing values were
considered. All echocardiographic variables were
continuous. Missing values in continuous variables
were filled with the mean value obtained for the rest
of the patients. Comorbidities were considered
negative if not coded.
Training the machine learning model. The training pro-
cess involved feature selection, classification algo-
rithm training, and hyperparameter tuning. Before
training the actual model, a feature selection opera-
tion was performed by combining multivariate anal-
ysis of variance and biplot methods,17 thus allowing
 from ClinicalKey.com by Elsevier on June 15, 
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FIGURE 1 Machine Learning Model Workflow

1 Machine-learning model generation
1b Training the model

Classification algorithm training
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Feature selection
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Labels for examples
1, 2, 3, and 4 years scheduled
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Else
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Else
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2 External model validation

Machine learning model

Model serving
Real-world clinical application of the model was

performed with prospective acquisition data from a
second-university-hospital

Subjects of deployment
Mild to moderate aortic stenosis patients and

periodic examinations

Deployment data
180,381 echocardiograms (January 2011- July 2019)

4,531 echocardiograms from 1,533 patients with mild
to moderate aortic stenosis having an imaging follow-up

Data preparation

Data collection 
103,146 echocardiograms (July 2007- July 2019)

from a first-university-hospital

4,633 echocardiograms from 1,638 patients with
mild to moderate aortic stenosis having an imaging

follow-up

3 Clinical Results

Metrics
Predictions for the model were compared with the American and European

guidelines recommendations with the ground-truth labels

Machine-learning model saving
49% echocardiographic examinations respect to European guidelines
13% echocardiographic examinations respect to American guidelines

28.7% timely echocardiographic examinations
3.9% untimely echocardiographic examinations

1.1 premature echocardiographic examinations per patient

Machine-learning
model

32.6% timely echocardiographic examinations
0% untimely echocardiographic examinations

2.2 premature echocardiographic examinations per patient

29.7% timely echocardiographic examinations
2.9% untimely echocardiographic examinations

1.3 premature echocardiographic examinations per patient

1a Data set and data curation

Task definition
Machine learning provides real-time, automated,

personalized next echocardiographic follow-up visit

Subjects of the study
Mild to moderate aortic stenosis patients with

periodic echocardiographic evaluation

Input
Echocardiographic and demographic variables

Output
Severe aortic stenosis

Clinical work-flow application
Next scheduled echocardiographic follow-up visit at

1, 2, 3 or 4 years

Interval Interval Interval

90% training data set 10% test data set

Preprocessing data

Randomly split of processed examples

Transformation Normalization Cleaning & Encoding

Data preparation

6-18
months

18-30
months

30-48
months

Severe aortic
stenosis

192 echocardiograms

Severe aortic
stenosis

158 echocardiograms

Severe aortic
stenosis

231 echocardiograms
Outputs
(labels)

Inputs
(features)

Feature
engineering

Overview of the phases followed to build and apply the machine learning model and matching learning prediction results applied to clinical decision making.
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simultaneous hyperspatial representations of sub-
jects (as points) and variables analyzed (as vectors),
along with their binary characterization (severe vs
nonsevere AS). By projecting the subjects of each
category on the variables, we were able to assign a
discriminant value to each of them. These values
were used to establish a ranking (Supplemental
Figure 1). From the feature selection analysis, a final
set of 10 variables was selected to develop the model,
listed according to the variables’ importance: peak
aortic jet velocity, mean aortic velocity, aortic veloc-
ity time integral, patient age, left ventricular mass,
slope of deceleration of the mitral E wave, left ven-
tricular ejection fraction, left ventricular stroke vol-
ume, mean left ventricular outflow tract velocity, and
left ventricular end-diastolic volume.

Model development codes were written in Python
and made use of the open code library scikit-learn.18

To predict AS echocardiographic follow-up, we pro-
posed an XGBoost (open source software) classifier
because of its high efficiency and versatility.9

A classification model was chosen in favor of a
regression model because the prediction error was
larger for regression models when trying to give more
specific temporal data as output. The choice of the
XGBoost algorithm was made because of its proven
Downloaded for Anonymous User (n/a) at Brazilia
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better performance,19 and it was based on the tech-
nical merits of improving and updating these models
in the future.

We tuned the hyperparameters to improve the
performance of the ML classifiers (Supplemental
Table 2). Automated hyperparameter selection was
done according to best performance in stratified
10-fold cross-validation measured as the area under
the receiver-operating characteristic curve (AUC-
ROC), later also used to evaluate our final models.
Internal model validation. The individual ML classifiers
were internally evaluated with a 10-fold cross-
validation scheme with 10 repetitions.20 Because
training of the models includes a hyperparameter
tuning step that also performs its own cross-
validation step, this resulted in nested cross-
validations. Predictions for severe AS development
at 1, 2, and 3 years for the test set were compared with
the ground-truth labels.
Metrics and follow-up recommendations. The ROC and
the precision-recall (PR) curve analyses were used to
assess the predictive capacity of each individual ML
model.

To provide an optimal echocardiographic follow-
up window, we used the probability function of the
classifier together with a cutoff threshold. Therefore,
n Society of Cardiology from ClinicalKey.com by Elsevier on June 15, 
hout permission. Copyright ©2023. Elsevier Inc. All rights reserved.
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FIGURE 2 Patients’ Flow Diagram for Both Data Sets

103,146 echocardiograms from 60,657 patients eligible between July 2007 and July 2019

First-university-hospital population
(model development)

98,513 echocardiograms and 59,019 patients excluded
      88,191 echocardiograms and 53,024 patients with non-aortic stenosis
      3,840 echocardiograms and 1,051 patients with prosthetic aortic valve (or stress
      echocardiogram performed)
      973 echocardiograms following a first severe aortic stenosis assessment
      55 echocardiograms and 18 patients with aortic stenosis inconsistency measurement
      217 echocardiograms followed by another study within one month
      4,735 echocardiograms and 4,735 patients with aortic stenosis but unique evaluation
      502 echocardiograms and 191 patients with no data regarding aortic stenosis severity

4,633 echocardiograms from 1,638 patients with initial mild to moderate aortic stenosis
         1,638 echocardiograms corresponding to initial evaluation
         2,995 echocardiograms corresponding to periodic monitoring

180,381 echocardiograms from 89,802 patients eligible between January 2011 and July 2019

Second-university-hospital population
(model deployment)

175,850 echocardiograms and 88,269 patients excluded
      159,623 echocardiograms and 81,221 patients with non-aortic stenosis
      10,815 echocardiograms and 3,242 patients with prosthetic aortic valve (or stress
                                  echocardiogram performed)
      1,138 echocardiograms following a first severe aortic stenosis assessment
      81 echocardiograms and 19 patients with aortic stenosis inconsistency measurement
      195 echocardiograms followed by another study within one month
      3,678 echocardiograms and 3,678 patients with aortic stenosis but unique evaluation
      320 echocardiograms and 109 patients with no data regarding aortic stenosis severity

4,531 echocardiograms from 1,533 patients with initial mild to moderate aortic stenosis
         1,533 echocardiograms corresponding to initial evaluation
         2,998 echocardiograms corresponding to periodic monitoring

The training cohort where the machine learning model was developed and the external cohort where the machine learning model was

deployed.
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a patient who surpassed the risk threshold for severe
AS development at 1 year was assigned to a 1-year
follow-up. We followed same strategy to assign
2- and 3-year follow-ups. If the risk was below all
model thresholds, the patient was assigned to a
4-year follow-up screening. The cutoff thresholds
were chosen after performing a grid search for the
combination that results in fewer echocardiographic
examinations per year, on the condition of having at
most the same number of late echocardiographic ex-
aminations than the American guidelines, when
evaluated on the results of internal validation.
Downloaded for Anonymous User (n/a) at Brazilian Society of Cardiology
2023. For personal use only. No other uses without permission. Copyri
The classification performance at particular cutoff
thresholds was also evaluated according to its sensi-
tivity, specificity, precision, and negative predictive
value, in the group not scheduled for a follow-up by
the previous model and threshold.

EXTERNAL APPLICATION. The model and cutoff
values were evaluated in an external cohort from a
second and different tertiary university hospital in
Madrid, Spain. Data were obtained from a series of
180,381 unselected consecutive echocardiograms
from 89,802 patients screened between January 2011
to July 2019. Outcome data of the composite endpoint
 from ClinicalKey.com by Elsevier on June 15, 
ght ©2023. Elsevier Inc. All rights reserved.



TABLE 1 AUC-ROC for the Developed ML Models in the Internal Validation

ML Model Algorithm AUC-ROC

1 y L2-regularized logistic regression 0.90 (0.89-0.92)

Random Forest 0.90 (0.88-0.92)

XGBoost 0.90 (0.88-0.92)

2 y L2-regularized logistic regression 0.92 (0.91-0.93)

Random Forest 0.92 (0.91-0.93)

XGBoost 0.92 (0.90-0.93)

3 y L2-regularized logistic regression 0.92 (0.91-0.94)

Random Forest 0.92 (0.91-0.93)

XGBoost 0.92 (0.91-0.93)

AUC-ROC ¼ areas under the receiver-operating characteristic curves; ML ¼ machine learning.
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of aortic valve replacement (either surgical or percu-
taneous) or any-cause mortality were recorded from
the electronic medical records for this cohort.

Echocardiographic surveillance recommendations
on the basis of the whole ML system (applying the 3
models as described earlier), the European guide-
lines,4 and the American guidelines6 were compared
with the ground-truth labels. Echocardiographic
follow-ups scheduled by each system were labeled as
follows: premature, if the patient did not develop
severe AS within 6 months of the predicted interval;
timely, if the scheduled follow-up was within
6 months of the diagnosis of severe AS; and untimely,
if the patient developed severe AS more than
6 months before the recommended follow-up. For the
efficiency calculation, we restricted the analysis to
the 856 patients (of 1,533) whose AS severity status
was assessed yearly during the 3 years following after
the baseline visit. A total of 100 bootstrap resamples
were used to provide CIs for these measurements and
McNemar’s test was used for significance testing.

The performance of the individual models in sub-
groups of clinical interest was analyzed in this
external application in terms of the AUC-ROC and
area under the PR curve (AUC-PR) curves.

Institutional approvals to undertake the study
were provided by the Local Ethics Committees of both
centers (approvals 2018/10/127 in Salamanca and 228/
17 in Madrid), which exempted the need for patient
informed consent because the study required no
modification in standard clinical practice. All data
sets were anonymously analyzed, and the study was
performed following current recommendations of the
Declaration of Helsinki.

RESULTS

MACHINE LEARNING MODEL DEVELOPMENT. From the
training cohort data set (flowchart in Figure 2), we
identified 1,638 patients with initial mild or moderate
AS who underwent 4,633 echocardiographic studies;
2,995 of these studies corresponded to periodic
monitoring different from the initial evaluation.

Patients had a mean age of 73 � 11 years at the
initial evaluation, 52.4% were men, and 1,124 (68.6%)
presented with mild AS and 514 (31.4%) with moder-
ate AS. Comorbidities recorded were hypertension
(67.7%), dyslipidemia (54.8%), diabetes (29.0%), a
history of tobacco use (22.0%), current tobacco use
(4.1%), and chronic kidney disease with glomerular
filtration rate lower than 60 mL/min/1.73 m2 (3.7%).
Each patient had an average of 1.8 � 1.3 periodic ex-
aminations after the first echocardiographic study,
and the average time between examinations was
Downloaded for Anonymous User (n/a) at Brazilia
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2.0 � 1.5 years. Duration of follow-up was 3.6 � 2.4
years, ranging from 0.1 to 11.3 years. Normalized for
length of follow-up and expressed as an annual rate
of change, aortic jet velocity increased by 0.18 �
0.64 m/s per year, and mean gradient increased by
3.15 � 14.1 mm Hg per year. Diagnosis of severe AS
was made during follow-up in 581 (19.4%) of the 2,995
periodic echocardiographic examinations: in 231 of
these studies (39.8%) this change was observed over
the first year of follow-up; it was seen in 192 (33.0%)
over the second year and in 158 (27.2%) over the third
year.

The prediction accuracy of the different ML algo-
rithms under consideration is shown in Table 1, with
a similar area under the ROC curve of 0.90
(95% CI: 0.88-0.92), 0.92 (95% CI: 0.90-0.93), and
0.92( 95% CI: 0.91-0.93) for predicting severe AS at 1,
2, and 3 years, respectively. Demographic and echo-
cardiographic variable information split by output
label is shown in Supplemental Table 3. Of note,
broadening the input into the model with comorbid-
ities did not improve the accuracy of the ML algo-
rithms (Supplemental Figure 2).

We chose operating thresholds for each ML model
according to the internal validation results. The first
model predicted severe AS at 1 year for all patients
having an estimated risk >6.8% with a sensitivity of
90.8%, a specificity of 74.6%, precision of 24.2%, and
a negative predictive value of 98.9%. In the same
way, the second model predicted severe AS at 2 years
for patients with an estimated risk >2.8% with a
sensitivity of 70.9%, a specificity of 82.3%, precision
of 11.4%, and a negative predictive value of 98.9%, in
those patients not scheduled to have a follow-up at 1
year by the previous model. Finally, the third model
predicted severe AS at 3 years in patients with an
estimated risk >2.0% with a sensitivity of 77.1%, a
specificity of 73.6%, precision of 9.3%, and a negative
predictive value of 98.9%, in the patients not sched-
uled for follow-up by the previous 2 models.
n Society of Cardiology from ClinicalKey.com by Elsevier on June 15, 
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FIGURE 3 Receiver-Operating-Characteristic Curves for Machine Learning Models
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The area under the curve receiver-operating-characteristic (AUC) curves for each individual model of the machine learning follow-up recommendation system. The

cutoff thresholds for each model are represented as points over the curve together with the corresponding point for European and American guidelines. The European

guidelines have 0% specificity (they schedule a follow-up for all patients) but have 100% sensitivity (they always detect severe aortic stenosis in a timely manner). The

machine learning model and American guidelines have only 0% specificity and 100% sensitivity for the 3-year model because they schedule a follow-up for 3 years

whether the baseline stenosis is mild or moderate.
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FIGURE 4 Envisioned Clinical Use of the Machine Learning Prediction

Baseline 1 Year 2 Years 3 Years

29.7% Timely
2.9% Untimely
1.3 Premature echos

per patient

41% savings respect to
European guidelines

32.6% Timely
0% Untimely
2.2 Premature echos

per patient

28.7% Timely
3.9% Untimely
1.1 Premature echos

per patient

49% savings respect to
European guidelines &
13% respect American

Machine-learning
model

This figure used as an example a group of 100 patients from the external cohort data set for which ground truths (severe or nonsevere aortic stenosis) are known for

each of the 3 surveillance years following the baseline examination. The severity of aortic stenosis is represented in different colors: yellow for mild, orange for

moderate, and red for severe aortic stenosis. Each circle represents an echocardiographic examination: black circles are baseline examinations, blue circles are

premature follow-ups, green circles are timely follow-ups, red circles are untimely follow-ups, and dotted red circles represent patients without scheduled follow-up

in the third year whose next follow-up will be untimely. echos ¼ echocardiographic follow-ups.
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MACHINE LEARNING MODEL APPLICATION. The external
application of the ML model and its comparison with
current clinical practice guidelines were performed
using the external cohort data (Figure 2). We identi-
fied 1,533 patients with initial mild-to-moderate AS
who underwent 4,531 echocardiographic studies;
2,998 of these studies corresponded to periodic
monitoring different from the initial evaluation.

In this external cohort data set, patients had a
mean age of 77 � 11 years at initial evaluation, and 792
(51.7%) presented with mild AS and 741 (48.3%) with
moderate AS. Each patient had an average of 2.0 � 1.3
periodic examinations after their first echocardio-
graphic study, the average time between examina-
tions was 1.4 � 1.0 years, and the duration of
follow-up was 2.4 � 1.7 years, ranging from 0.1 to
7.0 years. In this cohort, aortic jet peak velocity
increased by 0.27 � 0.68 m/s per year, and mean
gradient increased by 4.3 � 10.8 mm Hg per year.
Diagnosis of severe AS was made during follow-up
in 808 (27.0%) of the 2,998 periodic echocardio-
graphic examinations: in 397 (49.1%), this change
was observed over the first year of follow-up; in
244 (30.2%), it was seen over the second year; and
Downloaded for Anonymous User (n/a) at Brazilia
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in 167 (20.7%), it was noted over the third year of
follow-up.

Performance of the model during external appli-
cation obtained an AUC-ROC curve of 0.85 (95% CI:
0.84-0.87), 0.85 (95% CI: 0.84-0.87), and 0.85
(95% CI: 0.84-0.87) for predicting severe AS at 1, 2,
and 3 years, respectively (Figure 3). Demographic
and echocardiographic variable information split
by output label is shown in Supplemental Table 4,
and the contribution or the importance of each
feature on the prediction of the model is shown in
Supplemental Figure 3.

Specificity and sensitivity metrics obtained from
the European and American guidelines lie over the
model ROC curves. In this external validation cohort,
a random estimator would have an AUC-PR curve of
0.14 for the 1-year model, 0.29 for the 2-year model,
and 0.46 for the 3-year model, whereas our ML model
showed an AUC-PR curve of 0.50, 0.69, and 0.82 at 1,
2, and 3 years, respectively, which is a substantial
increase.

The efficiency of the ML follow-up recommenda-
tion and its comparison with European and American
guidelines are shown in Figure 4. European guidelines
n Society of Cardiology from ClinicalKey.com by Elsevier on June 15, 
hout permission. Copyright ©2023. Elsevier Inc. All rights reserved.
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CENTRAL ILLUSTRATION Machine Learning for the Echocardiographic Follow-Up of Aortic Stenosis

Patient Adaptive
Scheduled Follow-Up Visit

Patient Age +
Ultrasound Input Data
Peak aortic jet velocity
Mean aortic velocity
Aortic velocity time integral
Left ventricular mass
Slope of deceleration of mitral E-wave
Left ventricular ejection fraction
Left ventricular stroke volume
Mean left ventricular outflow tract velocity
Left ventricular end-diastolic volume

Machine-Learning Model
to Plan Follow-Up Examination

Model 1
year

Yes

YesNo

No
Yes

No Next scheduled
examination 4 year

Next scheduled
examination 3 year

Next scheduled
examination 2 year

Next scheduled
examination 1 year

Model 2
years

Model 3
years

Evolve
to

severe AS
in 3 years

Evolve
to

severe AS
in 2 years

Evolve
to

severe AS
in 1 year

Sánchez-Puente A, et al. J Am Coll Cardiol Img. 2023;16(6):733–744.

Machine learning methodology provides patient-adaptive follow-up echocardiographic examinations on the basis of patient age and echocardiographic measurements

in patients with mild-to-moderate aortic stenosis (AS).
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had 32.6% (95% CI: 29.6%-31.1%) of patients with
timely follow-ups, 0% with untimely follow-ups, and
2.2 (95% CI: 2.1-2.3) premature follow-up echocardio-
graphic examinations per patient (87% of the total
echocardiograms). American guidelines had 29.7%
(95% CI: 26.6%-32.3%) with timely follow-ups, 2.9%
(95% CI: 2.0%-4.0%) with untimely follow-ups, and
1.3 (95% CI: 1.2-1.3) premature follow-up echocardio-
graphic examinations per patient (80% of the total
echocardiograms). The ML system had 28.7% (95% CI:
25.7%-31.1%) patients with timely follow-ups, 3.9%
(95% CI: 2.9%-5.1%) with untimely follow-ups, and 1.1
(95% CI: 1.1-1.2) premature follow-up echocardio-
graphic examinations per patient (77% of the total).
The difference in untimely follow-ups between the
ML system and the American guidelines was 1.0%
(95% CI: �0.2% to 2.3%; P ¼ 0.18), not statistically
significant, and with respect to the European guide-
lines it was 3.9% (95% CI: 2.9%-5.1%; P < 0.001),
statistically significant. When expressed as the per-
centage of unnecessary echocardiographic examina-
tions per year, the ML system saved 13% and 49% of
examinations when compared with American and
European guidelines recommendations, respectively.
Global performance for the ML system to predict the
combined outcome endpoint of all-cause mortality or
aortic valve replacement was moderate (AUC: 0.65 for
the outcome prediction at 3 years; 95% CI: 0.63-0.67).

PERFORMANCE OF THE MODEL IN SELECTED SUBGROUPS.

We evaluated the performance of the model for
patients <55 years of age (who are likely to have
Downloaded for Anonymous User (n/a) at Brazilian Society of Cardiology
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aortic bicuspid valve AS), patients with low-flow low-
gradient AS, patients with other concomitant valve
disease, and patients with mild or moderate AS at
evaluation in the external cohort. Discrimination of
the model in patients with likely aortic bicuspid valve
AS demonstrated superior performance as assessed
by the AUC-ROC curve of 0.98, 1.00, and 0.89 and
by the AUC-PR curve of 0.81, 0.95, and 0.83 for pre-
dicting severe AS at 1, 2, and 3 years, respectively
(Supplemental Figure 4). Discrimination of the model
in patients with low-flow low-gradient AS demon-
strated good performance as assessed by the AUC-
ROC curve of 0.87, 0.84, and 0.84 and by the
AUC-PR curve of 0.82, 0.85, and 0.88 for predicting
severe AS at 1, 2, and 3 years, respectively
(Supplemental Figure 5). In contrast, discrimination
of the model in patients with concomitant aortic
regurgitation (Supplemental Figure 6) or concomitant
mitral regurgitation (Supplemental Figure 7) did not
improve the overall model performance in the
external cohort. Interestingly, discrimination of the
model in patients with mild or moderate AS demon-
strated comparable performance (Supplemental
Figure 8).

DISCUSSION

This study shows that patients with mild-to-moderate
AS can be characterized using ML methods to
schedule follow-up echocardiographic examinations
that are tailored to the AS progression of specific
 from ClinicalKey.com by Elsevier on June 15, 
ght ©2023. Elsevier Inc. All rights reserved.
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TABLE 2 Classification Performance of the ML Model Calculated for 3 Different Thresholds

Timely
Examinations, %

Untimely
Examinations, %

Premature
Examinations per

Patient, n

Saving Examinations
Compared With

European Guidelines, %

Saving Examinations
Compared With

American Guidelines, %

ML model/thresholds 1 27.7 4.9 1.05 52 17

ML model/thresholds 2a 28.7 3.9 1.10 49 13

ML model/thresholds 3 31.3 1.3 1.46 34 �15

European guidelines 32.6 0 2.20 — �41

American guidelines 29.7 2.9 1.27 41 —

aML model/thresholds 2 used in Figure 4. Two additional sets of cutoff thresholds (model/thresholds 1 and 3) were chosen to be riskier and more conservative, respectively, to
evaluate the possibilities of adapting the recommendations to each health care system.

Abbreviation as in Table 1.
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individual patients (Central Illustration). To our
knowledge, this investigation represents the first
evidence regarding AS imaging surveillance and
could set a basis for future guidelines with a Level of
Evidence: C.

This study has implications for caregivers and pa-
tients. Using existing rigid follow-up intervals, AS
patients receive unnecessary follow-up imaging ex-
aminations, which introduce unnecessary hospital
workload and costs to the medical care system.21,22 By
contrast, the proposed ML model increases efficiency
while also detecting patients who are likely to
develop severe AS more rapidly.

To put numbers to these cost savings, if we applied
our ML model to the European (741.4 million � 0.4%)
and U.S. (327.2 million � 0.4%) AS groups,1 we esti-
mate we could save 180,000 to 150,000 echocardio-
graphic examinations per year, and the consequent
cost saving (in U.S. dollars) would be $83,160,000 and
$69,300,000, respectively (calculation estimated with
a fee for a formal hospital-based echocardiogram of
$462).23 If we considered the data from the external
cohort, the cost to perform a timely examination was
reduced with our ML model by between $353,589 per
year with respect to the most conservative European
guideline and $95,172 per year with respect to the
American guideline.

Importantly, the ML model allows us to individu-
alize its thresholds (Table 2) depending on caregivers
(eg, U.S. access to health care services is lagging
behind Europe in general, or cost of health care is
higher in the United States compared with Europe).
For example, policymakers would have the option to
use an ML model reducing use of echocardiographic
surveillance to 1.05 premature follow-ups per patient
(saving 54% and 17% examinations when compared
with European and American guidelines, respec-
tively) at increasing the number of untimely exami-
nations up to 5%; or they would have the option of
Downloaded for Anonymous User (n/a) at Brazilia
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using an ML model reducing the number of untimely
examinations down to 1% at increasing 1.5 premature
follow-ups (still saving 34% examinations when
compared with European guidelines but increasing
15% examinations when compared with American
guidelines).

Little is known about appropriate echocardiogra-
phy intervals for repeat imaging testing in specific
cardiac clinical settings,24,25 even in valvular heart
disease.3 The absence of relevant research for AS pa-
tients has forced the guidelines to rely on the
consensus opinion of experts,4,6 with different
consideration among guidelines. Our ML system adds
value to the current Level of Evidence: C guideline
recommendations because it is able to replicate the
results, and, in addition, it enables the possibility of
tailoring the classification thresholds to schedule
follow-up recommendations depending on the
resource availability of each health care system.
Artificial intelligence models can provide information
on Level of Evidence: C recommendations, which still
represent 41.5% among recommendations in major
cardiovascular society guidelines with a flat
improvement along the last 10 years.26 However, it is
also necessary to integrate future ML analysis with
other recommendation grades.27,28

STUDY LIMITATIONS. First, even though transaortic
maximum velocity is the most robust hemodynamic
parameter to characterize AS severity, the current
definition of severe AS also includes a mean pressure
gradient $40 mm Hg and an aortic valve area below
1 cm2.4 When the model output was redefined on the
basis of transaortic peak velocity and mean pressure
gradient (severe AS was graded when at least 1 of the
following conditions was observed: peak velocity
was $4 m/s or mean pressure gradient $40 mm Hg),
only 13 of the 1,638 patients in the training data set
and 25 of the 1,533 patients in the external cohort data
set would be considered to have severe AS, with this
n Society of Cardiology from ClinicalKey.com by Elsevier on June 15, 
hout permission. Copyright ©2023. Elsevier Inc. All rights reserved.
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consideration earlier than with the transaortic peak
velocity criterion alone. The results from developing
new models using these criteria did not yield any
improvement with respect to the models presented in
the study, both in internal validation or external
application (Supplemental Figure 9).

Second, assessment of echocardiographic aortic
valve area by continuity equation has well-known
theoretical and practical limitations that question its
use in patients with mild and moderate aortic valve
obstruction and normal transaortic flow.29,30 Besides,
we used a clinical echocardiography cohort to train
the model, in which aortic valve area values had not
been routinely measured because most of the pa-
tients had mild AS, and left ventricular outflow tract
diameter measurements were not routinely obtained
in these patients. In this setting, introducing aortic
valve area as criterion of severe AS implies a selection
bias. In any case, when using a dimensionless veloc-
ity ratio of 0.25 or less as a definition of severe AS (ie,
the ratio of the subvalvular velocity obtained by
pulsed wave Doppler imaging to the maximum ve-
locity obtained by continuous wave Doppler), newly
developed ML models yielded similar but not
improved results compared with the models that
were based on the transaortic peak velocity criterion.
These findings demonstrated the consistency of the
model (Supplemental Figure 10).

The ML model input consists of the echocardio-
graphic data from a single examination, without
considering previous echocardiographic studies. The
future and prospective incorporation of new data-
bases with serial echocardiographic data will improve
the model predictive capacity. Furthermore, valve
calcification has been shown to be a good predictor of
the progression rate of AS. Although the degree of
calcification is qualitatively reflected in most of the
echocardiographic reports, the retrospective nature
of the analysis does not allow including this variable
for semiquantitative grading of valve calcification.

In the developed ML model, misclassification of
severe AS was uncommon (3.9%). The interval be-
tween misclassification and diagnosis of severe AS
was 1 year (Figure 4). This interval could be relevant
in patients who develop the classic triad of symptoms
in the meantime and who should be educated about
the possible progression of their valve disease and the
need for advancing their echocardiographic exami-
nation appointment.

Some patients with AS in our study could have
undergone echocardiographic examinations for
Downloaded for Anonymous User (n/a) at Brazilian Society of Cardiology
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reasons other than regular follow-up, such as symp-
tom change, preoperative evaluation, other valvular
disease, or coexisting diseases. In addition, poor
cardiovascular outcomes have been recently related
to AS, not always related to disease progression.31

However, whether prospective echocardiographic
monitoring can affect this dismal prognosis remains
unknown.

Additional limitations could be model overfitting
and complexity because artificial intelligence and ML
models can aid the human decision process in routine
medical application only if their results are robust
and achievable within a reasonable computation
time. In this sense, the developed algorithm is fast,
and it takes under a second to process the full
external cohort data set and provide predictions on a
modern PC; conversely, training times are indeed
slow, and it can take longer than a day to train the
algorithms. Finally, ML applications, although valu-
able, can have unintended consequences.32

CONCLUSIONS

This work showed the efficiency of using ML meth-
odology to provide patient-adaptive follow-up visits
on the basis of the quantitative echocardiographic
measurements and demographic variables in patients
with AS. This methodology has been validated in an
external cohort showing the potential to transfer the
model among institutions and opening the discussion
to use these methodologies as a Level of Evidence: C
in current clinical guidelines. However, further pro-
spective validation is required to confirm the results.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: ML

algorithms can be implemented for echocardiographic

follow-up of patients with AS because they provide a

correct prediction of the progression of valve obstruction.

COMPETENCY IN PATIENT CARE AND PROCE-

DURAL SKILLS: Echocardiographic follow-up of a pa-

tient with AS can be precisely programmed on the basis of

the results of an ML algorithm.

TRANSLATIONAL OUTLOOK: The development and

implementation of artificial intelligence algorithms in the

characterization and follow-up of patients with valve

diseases may improve the efficiency of the overall man-

agement of these patients. Furthermore, ML could be

used to provide expert-level medical assessment for

Level of Evidence: C guideline recommendations.
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