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Background: Aortic stenosis (AS) is a common form of valvular heart disease, present in over 12% of the pop-
ulation age 75 years and above. Transthoracic echocardiography (TTE) is the first line of imaging in the adjudi-
cation of AS severity but is time-consuming and requires expert sonographic and interpretation capabilities to
yield accurate results. Artificial intelligence (AI) technology has emerged as a useful tool to address these lim-
itations but has not yet been applied in a fully hands-off manner to evaluate AS. Here, we correlate artificial neu-
ral network measurements of key hemodynamic AS parameters to experienced human reader assessment.
Methods: Two-dimensional and Doppler echocardiographic images from patients with normal aortic valves
and all degrees of AS were analyzed by an artificial neural network (Us2.ai) with no human input to measure
key variables in AS assessment. Trained echocardiographers blinded to AI data performed manual measure-
ments of these variables, and correlation analyses were performed.
Results:Our cohort included 256 patients with an average age of 67.66 9.5 years. Across all AS severities, AI
closely matched humanmeasurement of aortic valve peak velocity (r = 0.97,P < .001), mean pressure gradient
(r = 0.94, P < .001), aortic valve area by continuity equation (r = 0.88, P < .001), stroke volume index (r = 0.79,
P < .001), left ventricular outflow tract velocity-time integral (r = 0.89, P < .001), aortic valve velocity-time in-
tegral (r = 0.96, P < .001), and left ventricular outflow tract diameter (r = 0.76, P < .001).
Conclusions: Artificial neural networks have the capacity to closely mimic human measurement of all relevant
parameters in the adjudication of AS severity. Application of this AI technology may minimize interscan vari-
ability, improve interpretation and diagnosis of AS, and allow for precise and reproducible identification and
management of patients with AS. (J Am Soc Echocardiogr 2023;36:769-77.)
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Abbreviations

2D = Two-dimensional

AI = Artificial intelligence

AS = Aortic stenosis

AV = Aortic valve

AVA = Aortic valve area

AVR = Aortic valve

replacement

FDA = Food and Drug

Administration

HEART = Heart Failure

Etiology and Analysis

Research Team

IEC = Individual equivalence

coefficient

LVEF = Left ventricular

ejection fraction

LVOT = Left ventricular
outflow tract

LVOTd = Left ventricular
outflow tract diameter

MPG = Mean pressure

gradient

POCUS = Point-of-care

ultrasound

SVi = Stroke volume index

TTE = Transthoracic

echocardiography

Vmax = Peak velocity

VTI = Velocity-time integral
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Aortic stenosis (AS) is the most
common valvular heart disease
in Western countries, present in
over 12% of the population age
75 years and older,1 and is uni-
formly progressive. Patients with
a severe degree of AS experience
a 25.6% 2-year all-cause mortal-
ity rate.2 Even before symptom
development or progression to
severe obstruction, irreversible
myocardial damage in the form
of left ventricular hypertrophy,
fibrosis, and impairment can
occur, resulting in increased
morbidity and mortality unmiti-
gated by aortic valve replace-
ment (AVR).3-5 Thus, timely
identification and appropriate
risk stratification of these
patients are critical.

Due to widespread availability
and low testing risk, transthoracic
echocardiography (TTE) is the
first line of imaging in the diag-
nosis of AS. Current TTE tech-
niques have several limitations,
however. Accurate determination
of AS severity by TTE requires
advanced scanning and interpre-
tation expertise, which may be
lacking in general community set-
tings. Moreover, in emergency
room or acute inpatient settings,
around-the-clock access to sonog-
raphers and cardiologists is un-
available and providers’ time to
scan is limited. Prompt identifica-
tion of severe AS in acutely ill patients can have substantial implications
for clinical management. The identification of automated TTE mea-
surements to aid in classifying AS severity would improve accuracy
and consistency while providing rapid diagnostic information to guide
life-saving therapy.

Advances in artificial intelligence (AI), machine learning, and deep
learning have demonstrated much promise in transforming the land-
scape of echocardiography. Some recent examples of the application
of innovative AI technology to echocardiography include fully auto-
mated echocardiographic interpretation,6 assessment of systolic and
diastolic function,7 and measurement of global longitudinal strain.8

Although machine learning frameworks have been employed to
risk stratify AS using manually derived TTE measurements,9-11 a
fully hands-off methodology has not been investigated.

The objective of this study was to test the ability of an artificial neu-
ral network to accurately measure aortic valve (AV) peak velocity
(Vmax), AV velocity-time integral (VTI), AV mean pressure gradient
(MPG), left ventricular outflow tract (LVOT) diameter (LVOTd),
LVOT VTI, stroke volume index (SVi), and AV area (AVA) derived
through the continuity equation from two-dimensional (2D) echocar-
diographic and Doppler images as compared against gold standard,
trained human measurements.
or Anonymous User (n/a) at Brazilian Society of 
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METHODS

Study Population and Design

Clinically indicated echocardiographic images of adult patients ages
$18 years with at least 1 TTE performed between September 1,
2008, and February 28, 2022, at the University of Illinois at
Chicagowere included to create this cohort. Two hundred fifty-six pa-
tients were randomly selected with no AS (n = 94) or mild (n = 53),
moderate (n = 63), or severe (n = 46) AS. Exclusion criteria included
the presence of a bicuspid AV or AV prosthesis. The study was
approved by the University of Illinois at Chicago Institutional
Review Board with waiver of consent.
Echocardiography and Experienced Reader Evaluation

Transthoracic echocardiogram studies were performed by trained
sonographers using commercially available ultrasound systems
(Philips, GE, Siemens). A standardized imaging protocol was utilized
that included assessments of valvular function based on the American
Society of Echocardiography guidelines.12,13 Relevant measured
echocardiographic variables included AV Vmax (m/sec), MPG (mm
Hg), AV VTI by continuous-wave Doppler (cm), LVOT VTI by pulse
wave Doppler (cm), and LVOTd (cm). When Vmax was > 2 m/sec,
additional interrogation of apical, suprasternal notch, and right
parasternal windowswas performedwith a nonimaging Pedoff probe.
These measurements were used to calculate AVA by the continuity

equation, where AVA ¼
�
pðLVOTd

2 Þ2�LVOT VTI
�

AV VTI . The SVi was also

calculated, where SVi ¼ p
�
LVOTd

2

�2 � LVOT VTI.

Patients were initially selected for the study based on the aortic
severity classification listed on the final sonography report read by
an experienced, National Board of Echocardiography—certified cardi-
ologist. Manual measurements of AV VTI and LVOT VTI were then
performed by 3 trained physicians (K.D., B.S., A.T.). Due to the poten-
tial for error in calculation of the AVA as a squared value, the LVOTd
was measured by 2 level III echocardiographers (H.K., M.K.). The
LVOTd was measured by both human reader and AI in midsystole,
at the level of leaflet insertion. Typically, these values are all single
representative measurements. In cases of atrial fibrillation or signifi-
cant beat-to-beat variability, however, the readers averaged 5 repre-
sentative beats to come to the final AV VTI and LVOT VTI values;
post-extrasystolic beats were excluded.13 The final AS classification
was made based on the European Association of
Echocardiography/American Society of Echocardiography recom-
mendations for the assessment of valvular stenosis.13,14 In cases of
concordance between Vmax, MPG, and AVA, AS classification was
assigned automatically. In cases of discordance, the level III echocar-
diographers (H.K., M.K.) rendered final expert adjudication utilizing
the entirety of the echocardiogram. All readers were blinded to AI
data.
Us2.ai

Us2.ai has developed a Food and Drug Administration– (FDA-)
approved AI-driven solution that automates the interpretation of
the echocardiogram, thus providing clinical decision support to expert
and nonexpert medical practitioners. The Us2.ai algorithms
have been cleared by the US FDA following validation at the
Harvard/Brigham and Women’s Hospital Echo Core Lab, where the
deep-learning interpretations of 23 echocardiographic
Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



HIGHLIGHTS

� AI was applied to echocardiograms with normal AVs and AS.

� AI and human measurements of AV Doppler and area mea-

surements were closely matched.

� Artificial neural networks have the capacity to mimic human

measurements in AS.
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parameters—including cardiac volumes, ejection fraction, and
Doppler measurements—were compared with 3 repeated measure-
ments by core lab human experts. The primary outcome metric
was the individual equivalence coefficient (IEC), which compares
the disagreement between deep learning and human readers relative
to the disagreement among human readers. The predetermined non-
inferiority criterion was 0.25 for the upper bound of the 95% CI.
Secondary outcomes included measures of agreement, including
the mean absolute deviation. Among 602 studies from 600 partici-
pants (421 with heart failure, 179 controls, 69% women) with a
mean age of 57 6 16 years, the point estimates of IEC were all <0,
indicating that the disagreement between the deep-learning and hu-
man measures were lower than the disagreement among 3 core lab
readers, and the upper bound of the 95% CI of IECs fell below the
prespecified success criterion of 0.25. Secondary end points showed
good agreement of automated with human expert measurements,
with comparable or lower mean absolute deviations between auto-
mated and human experts relative to the mean absolute deviation
among human experts. This prior prospective validation study
demonstrated excellent agreement between deep learning and
expert human interpretation for a wide range of echocardiographic
measurements.
Furthermore, the Us2.ai algorithms have been externally validated

in diverse real-world cohorts:7 in a curated data set from Canada
(Alberta Heart Failure Etiology and Analysis Research Team;
HEART; n = 1,029 echocardiograms), a real-world data set from
Taiwan (n = 31,241), the US-based EchoNet-Dynamic data set
(n = 10,030), and an independent prospective assessment of the
Asian (ATTRaCT) and Canadian (Alberta HEART) data sets
(n = 142) with repeated independent measurements by 2 expert so-
nographers. In the ATTRaCT test set, the automated workflow classi-
fied 2D videos and Doppler modalities with accuracies (number of
correct predictions divided by the total number of predictions)
ranging from 0.91 to 0.99. The deep-learning algorithms were
demonstrated to automatically annotate 2D videos and Doppler
modalities with similar accuracy to manual measurements by expert
sonographers.
Building upon this work, Us2.ai has created deep-learning algo-

rithms to automate measurements necessary to AS severity adjudica-
tion. To the authors’ knowledge, no prior data exist examining the
accuracy of fully automated AS assessment as compared against
expert human reader measurements.

Artificial Intelligence Analysis

All studies retrospectively had the AI algorithms applied to their im-
ages. Transthoracic echocardiograms were deidentified and manually
uploaded to the Us2.ai platform. Us2.ai’s platform automates the
entire workflow of echocardiographic analysis and interpretation,
Downloaded for Anonymous User (n/a) at Brazilian Society of 
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including (1) identifying the correct 2D, color flow, or
Doppler view; (2) determining cardiac structures by segmentation
and annotation; and (3) generating decision support outcomes about
cardiac structure and function, namely, Vmax, MPG, and AVA
(Figure 1).
A rigorous confidence check process is utilized to ensure accuracy

in the measurements. The view classifier convoluted neural network
assesses the shape and placement of the annotation trace, evaluates
systolic and diastolic phase congruency with the electrocardiogram,
and checks that the automated measurement falls within a physio-
logic range. The highest-quality data are obtained across all image files
and all frames within each file. The convoluted neural network fol-
lows decision rules and will exclude images from further analysis if
they fail the prespecified checks and no measurement will be
generated.
Aortic valve area is calculated by the AI system using the same

LVOT-based continuity equation utilized by the human readers,
described above. The AI averages all quality-checked LVOT and AV
VTI measurements in the echocardiogram to arrive at the final value
used in the continuity calculation. Nomember of the Us2.ai teamwas
involved in manual echocardiographic data acquisition, and all AI
measurements were performed in an automated manner with no
human manipulation.

Statistical Analysis

All numerical data are presented with mean 6 SD or median with
interquartile range according to their distributions. Proportions of pa-
tients were reported by the number of patients out of the total studied
patients. Patient characteristics and echocardiographic measures were
summarized using descriptive statistics. Correlation coefficients be-
tween human and AI algorithms measurements were tested using
Pearson’s correlation. Significance is tested by Pearson’s product
moment correlation coefficient. All statistical analyses were per-
formed using R version 3.4.1 (Foundation for Statistical
Computing). A 2-tailed P value of <.05 was considered statistically
significant.
RESULTS

Artificial Intelligence

All 256 patient echocardiograms were submitted through the Us2.ai
platform, which performed a series of quality checks before yielding
automated measurements (Figure 2). A total of 37 studies (14%)
had at least 1 uninterpretable parameter (LVOTd, AV VTI, or LVOT
VTI) due to various 2D image or Doppler data quality issues, which
ultimately resulted in an inability to calculate AVA in these studies.
The most common cause for exclusion was an inability to confidently
measure LVOTd in 16 (6%) studies. In all 256 echocardiograms, the
AI was able to make at least 1 AS measurement: Vmax, MPG, and/or
AVA.
Baseline Characteristics

Baseline characteristics are shown in Table 1. Of the initial 256 patient
cohort, further demographic and comorbidity data were unavailable
for 3 individuals; 138 (53.9%) were male, 120 (46.8%) were Black,
and the mean age was 67.6 6 9.5 years. Ninety-four patients had
no AS, 53 had mild AS, 63 had moderate AS, and 46 had severe
AS, as adjudicated by human readers. Relevant comorbidities in the
Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



Figure 1 Schematic overview of Us2.ai workflow for 2D videos (A) and modalities (B).
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overall cohort included coronary artery disease in 109 (42.6%), type
II diabetes in 105 (41.0%), hypertension in 166 (64.8%), and hyper-
lipidemia in 103 (40.2%). Left ventricular ejection fraction (LVEF)
was < 30% in 15 (6.9%) and preserved, with LVEF $ 50%, in 169
(66.0%).
Correlation and Agreement

Correlation and agreement between AI-derived AS parameters and
experienced human reader measured values are shown in Figures 3
to 5. Strong positive correlation and agreement were demonstrated
between AI and manual measurements of the core variables used
in the continuity-based calculation of AVA. These include LVOT
VTI (r = 0.89, P < .001), AV VTI (r = 0.96, P < .001), and LVOTd
(r = 0.76, P < .001). Utilizing these measurements, AVA showed an
excellent correlation (r = 0.88, P < .001). Artificial intelligence—based
SVi also demonstrated strong correlation (r = 0.79, P < .001), as did
Vmax (r = 0.97, P < .001) and MPG (r = 0.94, P < .001). Table 2
shows similarity in the mean measurements of each of these param-
eters made by human readers compared with AI, across all degrees
of AS severity. Finally, in Table 3, intraclass correlation coefficients
are reported, showing high interobserver agreement between human
readers across all AS measurements.
Downloaded for Anonymous User (n/a) at Brazilian Society of 
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DISCUSSION

To the best of our knowledge, this is the first study demonstrating
the capacity of an AI technology to accurately quantify AS severity
with no human input beyond image acquisition. Our main findings
are that the Us2.ai algorithm closely matches expert human mea-
surement of AV Vmax (r = 0.97, P < .001), MPG (r = 0.94,
P < .001), AVA (r = 0.88, P < .001), and SVi (r = 0.79, P < .001)
across normal AVs and all grades of AS severity. Artificial intelli-
gence technology has the capacity to closely mimic experienced
human measurement of all relevant parameters in the adjudication
of AS severity.

Artificial intelligence technology has previously been used on
echocardiographic data sets, with measurements performed by
expert human readers, to predict outcomes in AS. Machine learning,
a subcategory of AI, leverages the use of complex computing and
statistical algorithms to process vast quantities of information to
identify the highest-yield relationships among the data.15 Playford
and colleagues10created an AI algorithm that used phenotypic char-
acteristics such as LVEF, diastology, and AV Vmax abstracted from
echocardiography reports to correctly grade 95.3% of severe AS pa-
tients against the gold standard AVA by continuity equation. The AI
algorithm was also a significant predictor of 5-year mortality,
Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



AV VTI
AV Mean Gradient
AV Peak Velocity

Total AS Cohort N= 256 for AI Analysis

Exclusions  (N = 12)
-View classifier unable to 
detect  CW AV view

Paired AV Doppler 
analysis with Human 

measurements 
N = 244

LVOT VTI

Exclusions  (N = 14)
-View classifier unable to 
detect a PW LVOT view
-Inadequate Doppler signal 
below confidence check 
threshold

Paired LVOT VTI with 
Human measurements 

N = 242

Measured 
variables

LVOT Diameter

Exclusions  (N = 16)
-View classifier unable to 
detect a PW LVOT view
-Inadequate Doppler signal 
below confidence check 
threshold

Paired LVOT diameter 
with Human 

measurements 
N = 240

Paired AVA Analysis (all three variables available for AI and Human Measurements)
N = 219

Figure 2 Flow chart demonstrating the yield of successful AI analysis of Doppler and LVOTd measurements. Artificial intelligence
analysis was performed on the entire cohort (N = 256), with exclusions applied by the software for the variables depending on the
ability to detect the appropriate view and application of confidence checks. Paired comparison with manually obtained measure-
ments was performed. For AVA analysis, paired comparison was performed only if all 3 necessary variables by continuity (AVA
VTI, LVOT VTI, and LVOTd) were obtainable. See text for further details and abbreviations.

Table 1 Baseline demographic and echocardiographic characteristics

Variable

AS severity

Normal (n = 94) Mild (n = 53) Moderate (n = 63) Severe (n = 46) P value

Age, years, mean 6 SD 65.5 6 8.2 64.9 6 9.0 68.8 6 9.3 73.2 6 10.2 <.001

Gender, male 56 (59.6) 27 (50.9) 31 (49.2) 24 (52.2) .57

Race .012

Caucasian 16 (17) 10 (19.2) 13 (21.3) 9 (19.6)

African American 56 (59.6) 17 (32.7) 28 (45.9) 19 (41.3)

Other 10 (10.6) 3 (5.8) 4 (6.6) 2 (4.3)

Ethnicity

Hispanic 12 (12.8) 22 (42.3) 16 (26.2) 16 (34.8)

Hypertension 74 (78.7) 44 (84.6) 7 (11.3) 41 (89.1) .327

Hyperlipidemia 31 (33) 23 (44.2) 23 (37.1) 26 (56.5) .006

Diabetes mellitus 31 (33) 22 (42.3) 34 (54.8) 18 (39.1) .483

Coronary artery disease 30 (31.9) 15 (28.8) 40 (64.5) 24 (52.2) .113

Ejection fraction: .863

<30 5 (5.7) 2 (4.1) 3 (5) 5 (11.6)

30-39 7 (8) 5 (10.2) 4 (6.7) 4 (9.3)

40-49 11 (12.5) 7 (14.3) 10 (16.7) 8 (18.6)

50-70 65 (73.9) 35 (71.4) 43 (71.7) 26 (60.5)

Data are expressed as n (%) unless otherwise specified.
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Figure 3 Artificial intelligence to experienced (manual) human reader correlations for AV Vmax, mean gradient, and AVA by continuity
equation.
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adjusted for age, sex, AV Vmax, and SVi, outperforming the
continuity-based AVA alone. Indexed AVA, LVEF, Vmax, MPG,
and SVi were utilized by Sengupta and colleagues9 to generate a
machine-learning framework that classified high- and low-risk AS.
Progression to AVR or progression to death in those who did not
receive AVR was better predicted by AI than by conventional clas-
sification of disease severity. However, all this prior work has relied
on expert- or core lab human operator—adjudicated TTE data,
which requires high-level imaging expertise and is susceptible to
interobserver variability.

The technical skill requirements and time constraints in the
echocardiographic assessment of AS are very real barriers in med-
ical practice. Rural or community sites may not have access to
formal cardiac imaging at all, and even in centers with echocardi-
ography laboratories experienced in valvular heart disease, emer-
Downloaded for Anonymous User (n/a) at Brazilian Society of 
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gency rooms and inpatient wards frequently lack 24-hour per
day, 7-day per week access to sonographers and echocardiog-
raphers. Point-of-care ultrasound (POCUS) technology has
emerged as a tool to aid in bedside assessment of AS.
Sachpekidis and colleagues16 recently showed that point-of-care,
handheld echocardiography with continuous-wave Doppler capa-
bility can provide AV Vmax similar to measurements obtained
on cart-based echocardiography systems, allowing for the accurate
diagnosis of clinically significant AS at the bedside. At this time, ac-
curate POCUS AS assessment can only be performed by a limited
group of providers with adequate training in echocardiography and
valvular heart disease. Incorporation of cloud-based AI technology
with POCUS would remove the need for such advanced training,
offering high-quality, nearly instantaneous AS grading at the
bedside to improve patient triage and management.
Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



Figure 4 Artificial intelligence to experienced (manual) human reader correlations for AV and LVOT VTI, LVOTd, and SVi.
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Beyond POCUS applications, AI-based AS assessment has tremen-
dous implications in formal echocardiography laboratories.
Maintaining high levels of accuracy in AS grading requires significant
time commitments by reading physicians and sonographers with each
study performed, to ensure 2D measurements and Doppler tracings
are accurate. Small variations in LVOTd, for example, can result in
complete reclassification of severity. Resource-intensive continuing
education and quality control are necessary to maintain interreader
and interscan consistency. Scanning and measuring extract a physical
toll as well, with significantly higher rates of work-related musculo-
skeletal injuries reported in sonographers compared with peer em-
ployees.17 Moreover, with the widespread use of transcatheter AV
replacement, the field of valvular heart disease is moving toward
increasingly nuanced AS evaluation, to separate out subpopulations
who may benefit from earlier valve replacement therapy. As cardiol-
Downloaded for Anonymous User (n/a) at Brazilian Society of 
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ogists collect and report more variables, the per scan time require-
ments and diagnostic complexity continue to increase. Deep-
learning platforms that function effectively using only imaging data
can be leveraged to create multivariate algorithms delivering precise,
patient-specific risk-prognostic information to guide AVR therapy.
Limitations

This study is of a retrospective cohort design, with limitations intrinsic
to such a study type. Additionally, 15% of the original cohort demon-
strated inadequate image quality for at least 1 of themeasurements by
AI. A substantial portion of the excluded cases were related to LVOTd
measurement, which is one of the most technically challenging as-
pects of AS assessment even for the expert echocardiographer.
Related to this issue, the lowest agreement between AI and human
Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



Figure 5 Bland-Altman plots of agreement between AI and human echocardiographic measurements.
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measurement was seen with LVOTd. The AI algorithm utilizes all
frames of all available video files to generate an LVOTd, whereas
the human reader measured from a visually assessed most optimal
frame. This may in part explain the discrepancy. Further training of
the AI system will be required to reduce the exclusion rate and
improve LVOTd measurement. The current technology allows the
user to review the LVOTd measurement made by the AI as a second-
ary quality control; although no human manipulation of AI measure-
ments was required in this cohort, this transparency serves as a further
check against any image segmentation errors.

Both a limitation and a benefit, AI takes all available, quality-
checked tracings for Doppler measurements and averages to create
a final value. While human readers excluded post-extrasystolic beats,
AI currently does not have that capacity. This may result in some
Table 2 Comparative AS measurements between human reader a

Manua

No AS Mil

Human reader

LVOTd, cm 2.18 6 0.18 2.07

LVOT VTI, cm 23.49 6 6.56 28.26

AV Vmax, m/sec 1.59 6 0.54 2.59

AV MPG, mm Hg 32.67 6 12.55 54.86

AV VTI, cm 32.67 6 12.55 54.86

AI

LVOTd, cm 2.10 6 .0.20 2.03

LVOT VTI, cm 24.58 6 6.50 29.38

AV Vmax, m/sec 1.52 6 0.54 2.65

AV MPG, mm Hg 32.80 6 13.14 57.49

AV VTI, cm 32.80 6 13.14 57.49

AVA, cm2 2.78 6 0.74 1.73

Data are expressed as mean 6 SD.

Downloaded for Anonymous User (n/a) at Brazilian Society of 
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disagreement between human and AI measurements in atrial fibrilla-
tion or cases with substantial beat-to-beat variability.
Future Directions

Future work will aim to utilize AI to categorize AS severity, incorpo-
rating multiple echocardiographic variables. There is often incongru-
ency among Vmax, MPG, and AVA when classifying AS, and in
those instances, expert readers report a holistic evaluation of the ste-
nosis severity, incorporating an assessment of overall data quality,
valve calcium burden, and valve motion together with hemodynamic
measures. Utilizing clinical outcomes data to train artificial neural net-
works to categorize AS severity using complete echocardiogramsmay
result in more nuanced classification of AS.
nd AI

l

d AS Moderate AS Severe AS

6 0.21 2.05 6 0.19 1.97 6 0.18

6 7.96 25.71 6 7.10 20.57 6 5.76

6 0.67 3.01 6 0.75 3.51 6 0.79

6 16.56 67.88 6 19.71 79.48 6 22.21

6 16.56 67.88 6 19.71 79.48 6 22.21

6 0.19 2.06 6 0.23 1.96 6 0.20

6 8.04 27.27 6 6.87 22.34 6 6.00

6 0.77 2.96 6 0.79 3.54 6 0.78

6 17.86 68.79 6 20.63 79.38 6 19.68

6 17.86 68.79 6 20.63 79.39 6 19.68

6 0.39 1.38 6 0.38 0.91 6 0.25

Cardiology from ClinicalKey.com by Elsevier on July 11, 
on. Copyright ©2023. Elsevier Inc. All rights reserved.



Table 3 Intraclass correlation coefficients for human reader
parameters

Intraclass correlation

coefficient [95% CI] P < .001

LVOTd 0.860 [0.759, 0.918]

LVOT VTI 0.952 [0.928, 0.968]

AV VTI 0.924 [0.886, 0.950]

AV MPG 0.928 [0.892, 0.952]

AV Vmax 0.945 [0.918, 0.964]
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CONCLUSION

Artificial neural networks have the capacity to closely mimic human
measurement of all relevant parameters in the adjudication of AS
severity. Application of this AI technology may minimize interscan
variability, improve interpretation and diagnosis of AS, and allow
for precise and reproducible identification and management of
patients with AS.
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