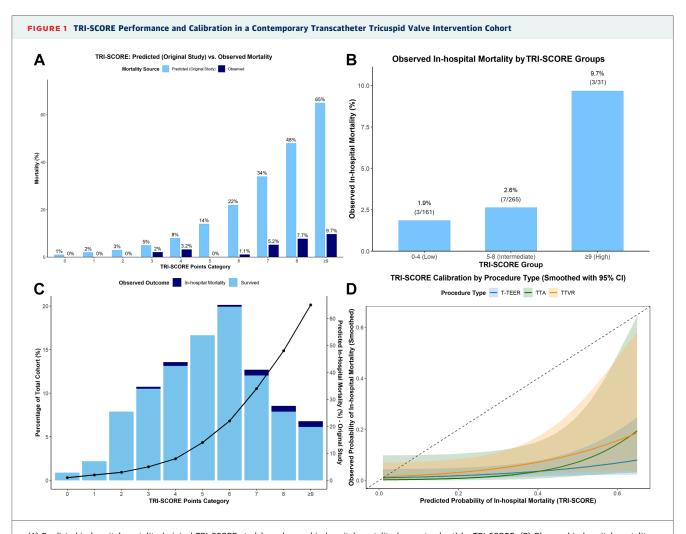

Letters

RESEARCH LETTER

Performance of the TRI-SCORE in a Multicenter Cohort Undergoing Transcatheter Tricuspid Valve Repair and Replacement

A total of 457 consecutive patients undergoing transcatheter tricuspid valve intervention (TTVI) were identified from an international, multicenter registry (6 centers in Germany, the United States, and Switzerland) between January 2019 and December 2024 and evaluated using the TRI-SCORE (original 8-variable model). This cohort included 243 T-TEER (53.2%), 131 TTVR (28.7%), and 83 TTA (18.2%) cases. The study included all consecutive patients meeting eligibility criteria from the participating centers during the study period. The primary outcome was in-hospital mortality. Discrimination was assessed using the C-statistic, and calibration plots of observed vs predicted mortality were assessed with the Hosmer-Lemeshow test. Missing data for the TRI-SCORE ranged from 0% to 21.2% (97 of 457) for bilirubin; other key missing rates included signs of right heart failure (4.8% [22 of 457]) and furosemide (3.3% [15 of 457]). All missing TRI-SCORE component values were imputed using a single-imputation random forest algorithm (R package missForest). This imputation strategy aligns with methodology in the original TRI-SCORE development,1 and a complete case analysis yielded consistent results.



Statistical analyses were performed using R version 4.2.2 (R Foundation for Statistical Computing). The study was approved by the local ethics committee and was conducted in accordance with the Declaration of Helsinki. This report was prepared in accordance with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement.

Overall, observed in-hospital mortality was 2.63% (12 of 457). The median follow-up duration for the cohort was 173 days (Q1-Q3: 88-530 days). In-hospital mortality occurred in 6 of 243 T-TEER patients (2.5%), 5 of 131 TTVR patients (3.8%), and 2 of 83 TTA patients (2.4%). The TRI-SCORE showed similar discrimination for in-hospital mortality across the entire cohort (C-statistic = 0.72; 95% CI: 0.56-0.88), consistent with its performance in the original surgical derivation. Within the TTVR subgroup (n = 131), the C-statistic was 0.67 (95% CI: 0.35-0.98). However, overall calibration was limited; average predicted mortality was 21.5%, which significantly overestimated the observed rate (P < 0.001, Hosmer-Lemeshow test).

The observed/expected mortality ratio for TTVR was 0.196 (95% CI: 0.08-0.47), while the observed/expected ratio for combined T-TEER and TTA was 0.110 (95% CI: 0.06-0.22) (P=0.31 for comparison with TTVR), indicating similar miscalibration across all groups. This mortality overestimation was apparent across the entire risk spectrum. Predicted mortality significantly exceeded observed rates within each TRI-SCORE category (Figure 1A). The distribution of patient outcomes contrasts with the high original TRI-SCORE predicted risk probabilities (Figure 1C). This miscalibration pattern was consistently observed across all TTVI subgroups, including TTVR, as shown in their calibration curves (Figure 1D).

In this contemporary cohort of 457 TTVI patients, the TRI-SCORE demonstrated adequate overall risk discrimination but substantial overestimation of inhospital mortality (2.63% [12 of 457] observed vs 21.5% [98 of 457] predicted). This miscalibration was consistent across all types of TTVI. This is the first analysis of the TRI-SCORE calibration in a substantial TTVR cohort (Figure 1D) and aligns with prior studies examining transcatheter repair.²⁻⁴ This also reflects

(A) Predicted in-hospital mortality (original TRI-SCORE study) vs observed in-hospital mortality (present cohort) by TRI-SCORE. (B) Observed in-hospital mortality (percentage) by custom TRI-SCORE groups (0-4, 5-8, and ≥9 points). (C) Stacked bars of observed outcomes (percentage of total cohort) by TRI-SCORE category, with original TRI-SCORE-predicted mortality probability overlaid (solid line, right y-axis). (D) Smoothed calibration plots for TRI-SCORE (observed vs predicted probability of in-hospital mortality) with 95% CIs, stratified by transcatheter tricuspid valve intervention procedure type. TTA = transcatheter tricuspid annuloplasty; T-TEER = transcatheter edge-to-edge repair; TTVR = transcatheter tricuspid valve replacement.

fundamental differences from the original surgical derivation cohort, such as the markedly lower observed mortality in contemporary TTVI despite high baseline patient risk.

The TRI-SCORE aids in relative risk ranking (Figure 1B), but the absolute probabilities of inhospital mortality reflected in the surgically derived original cohort are unreliable for TTVI. This overestimation could misguide clinical decisions regarding patient selection for TTVI or complicate shared decision making. Recalibrated risk scores specific for TTVI, including distinct considerations for TTVR, are needed.

Limitations of our analysis include the retrospective nature of our international multicenter analysis and its focus on in-hospital mortality. Additionally, our single-imputation approach did not account for the statistical uncertainty of missing data.

In conclusion, the TRI-SCORE can risk stratify those undergoing TTVI, including TTVR. However, there is significant and similar miscalibration of absolute risk in TTVR and other TTVI procedures, underscoring the need for tailored assessment tools.

ACKNOWLEDGMENT The artificial intelligence program Gemini was used for the wording of this article.

*Max Potratz, MD
Akhil Narang, MD
Muhammed Gerçek, MD
Felix Rudolph, MD
Mohammad Kassar, MD
Maria Isabel Koerber, MD
Tanja K. Rudolph, MD
Paul C. Cremer, MD
Volker Rudolph, MD
Charles J. Davidson, MD
*Department of Medicine
Division of Cardiology
676 North St. Clair Street
Arkes Pavilion

Chicago, Illinois 60611 USA

E-mail: max.potratz@northwestern.edu

This work was supported by the German Heart Foundation (Mit Fördermitteln der Deutschen Herzstiftung). Dr Potratz has received a research grant from the German Heart Foundation. Dr Gercek has received funding from Ruhr-University Bochum (Advanced Clinician Scientist Grant); and has received consultant fees from Edwards Lifesciences. Dr Narang has received speaker honoraria from Edwards Lifesciences. Drs V. Rudolph and T. Rudolph have received grants and speaker honoraria from Abbott Laboratories and Edwards

Lifesciences. Dr Davidson has received grants from Abbott Laboratories and Edwards Lifesciences; is an uncompensated consultant for Edwards Lifesciences; and has received honoraria from Philips Healthcare. Dr Koerber has received travel fees and consultant honoraria from Edwards Lifesciences, Abbott Laboratories, JenaValve, and Siemens Healthineers. Dr. F. Rudolph has received funding from the University of Bielefeld. The disclosure statements for Dr Cremer and Dr Kassar are on file with the respective institutions and will be formally declared during the author sign-off process.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.

REFERENCES

- **1.** Dreyfus J, Audureau E, Bohbot Y, et al. TRI-SCORE: a new risk score for inhospital mortality prediction after isolated tricuspid valve surgery. *Eur Heart J.* 2022;43(7):654–662.
- **2.** Omran H, Pfister R, Ehrenfels M-A, et al. Prognostic performance of the surgical TRI-SCORE risk score in patients undergoing transcatheter tricuspid valve treatment. *JACC Cardiovasc Interv.* 2022;15(19):1996-1998.
- **3.** Vogelhuber J, Tanaka T, Sugiura A, et al. Association of TRI-SCORE with clinical outcomes after transcatheter tricuspid valve repair. *JACC Cardiovasc Interv.* 2023;16(13):1698–1700.
- **4.** Dreyfus J, Galloo X, Taramasso M, et al. TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation. *Eur Heart J.* 2024;45 (8):586-597.