

Prognostic value of left ventricular global longitudinal strain in transcatheter edge-to-edge repair for chronic primary mitral regurgitation

Alon Shechter ^{1,2,3*}, Gloria J. Hong⁴, Danon Kaewkes ^{1,5}, Vivek Patel ¹, Parth Visrodia⁴, P. Ryan Tacon⁴, Ofir Koren ^{1,6}, Keita Koseki ^{1,7}, Takashi Nagasaka ^{1,8}, Sabah Skaf¹, Moody Makar¹, Tarun Chakravarty ¹, Raj R. Makkar¹, and Robert J. Siegel ^{1,9*}

¹Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd A3100, Los Angeles, CA 90048, USA; ²Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St, Petach Tikva 4941492, Israel; ³Faculty of Medicine, Tel Aviv University, 35 Klachkin St, Tel Aviv 6997801, Israel; ⁴Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; ⁵Department of Medicine, Faculty of Medicine, Khon Kaen University, Thailand; ⁶Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel; ⁷Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan; ⁸Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; and ⁹David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA

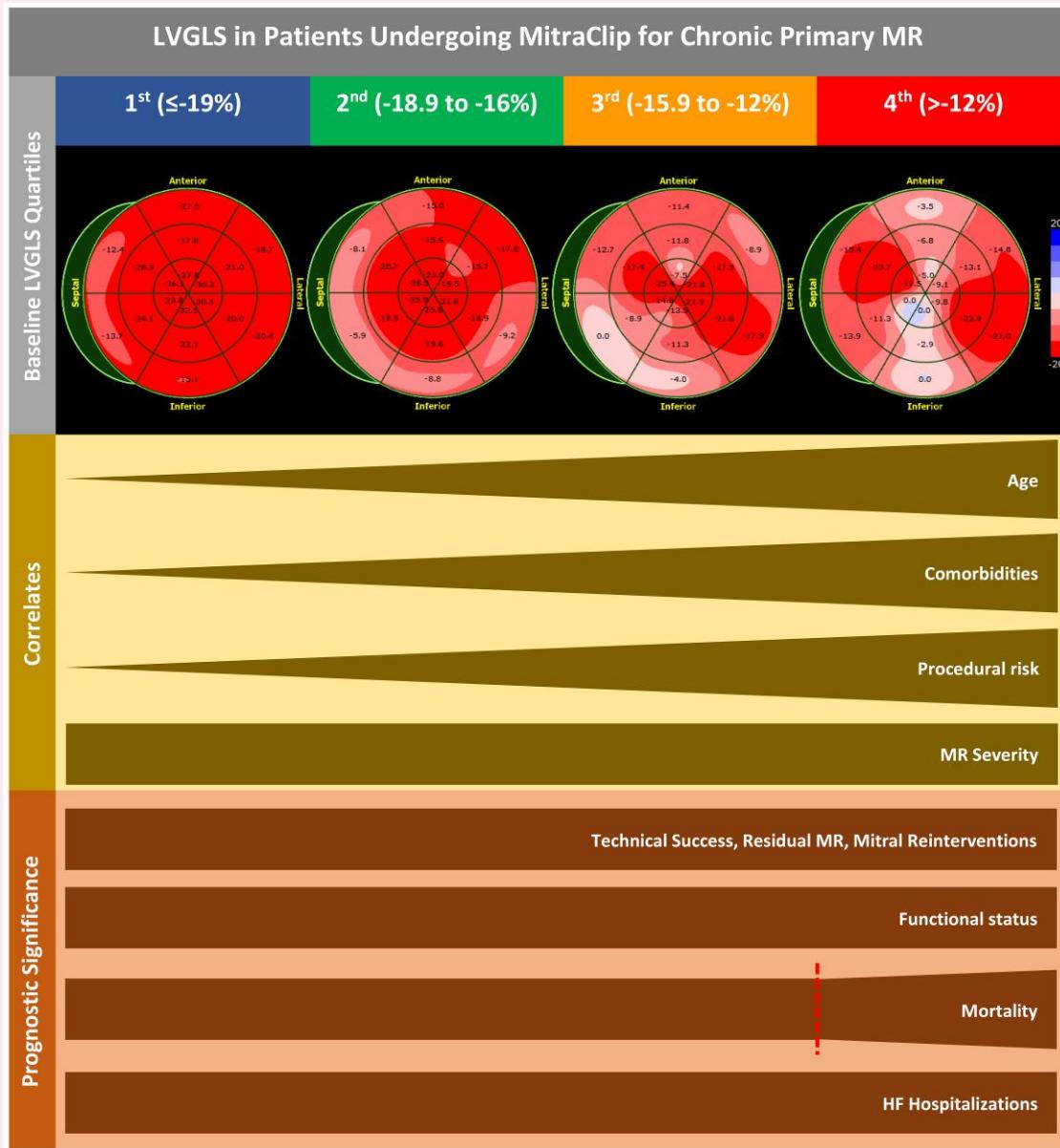
Received 26 January 2024; revised 28 February 2024; accepted 8 March 2024; online publish-ahead-of-print 26 March 2024

Aims

Left ventricular global longitudinal strain (LVGLS) is a known outcome predictor in transcatheter edge-to-edge repair (TEER) for functional mitral regurgitation (MR). We aimed to assess its prognostic yield in the setting of TEER for chronic primary MR.

Methods and results

We conducted a single-centre, retrospective analysis of 323 consecutive patients undergoing isolated, first-time procedures. Stratified by baseline LVGLS quartiles ($\leq -19\%$, -18.9% to -16% , -15.9% to -12% , $> -12\%$), the cohort was evaluated for the primary composite outcome of all-cause mortality or heart failure hospitalizations, as well as secondary endpoints consisting of mitral reinterventions and the persistence of significant residual MR and/or functional disability—all along the first year after intervention. Subjects with worse (i.e. less negative) LVGLS exhibited higher comorbidity, more advanced HF, and elevated procedural risk. Post-TEER, those belonging to the worst LVGLS quartile group sustained increased mortality (16.9% vs. 6.3%, Log-Rank $P = 0.005$, HR 1.75, 95% CI 1.08–4.74, $P = 0.041$) and, when affected by LV dysfunction/dilatation, more primary outcome events (21.1% vs. 11.5%, Log-Rank $P = 0.037$, HR 1.68, 95% CI 1.02–5.46, $P = 0.047$). No association was demonstrated between baseline LVGLS and other endpoints. Upon exploratory analysis, 1-month post-procedural LVGLS directly correlated with and was worse than its baseline counterpart by 1.6%, and a more impaired 1-month value—but not the presence/extent of deterioration—conferred heightened risk for the primary outcome.


Conclusion

TEER for chronic primary MR is feasible, safe, and efficacious irrespective of baseline LVGLS. Yet, worse baseline LVGLS forecasts a less favourable post-procedural course, presumably reflecting a higher-risk patient profile.

* Corresponding authors. E-mail: Robert.Siegel@cshs.org (R.J.S.); E-mail: alonshechter@gmail.com (A.S.)

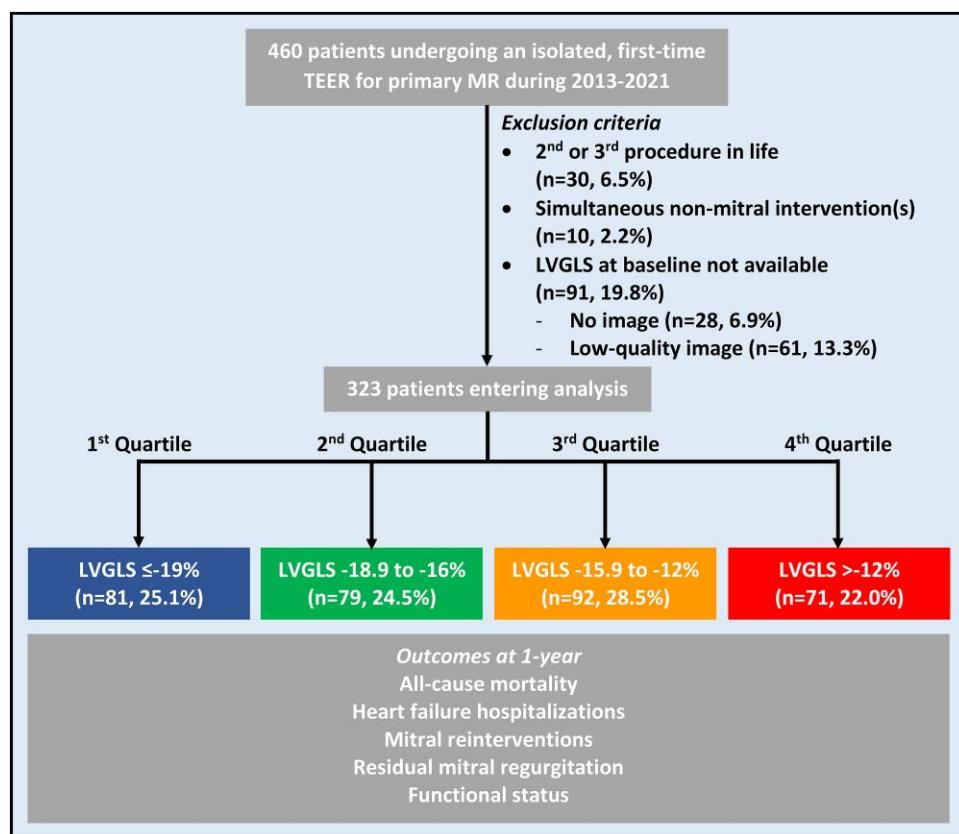
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Graphical Abstract

Keywords

mitral regurgitation • mitral transcatheter edge-to-edge repair • transcatheter mitral valve repair • MitraClip • global longitudinal strain

Introduction


Transcatheter edge-to-edge repair (TEER) has revolutionized the treatment of significant mitral regurgitation (MR) accompanied by symptoms or cardiac deterioration, enabling individuals at high surgical risk to benefit from a direct corrective intervention. Paralleling this therapeutic breakthrough, myocardial strain imaging has been introduced that holds the potential to enhance risk stratification by facilitating a more sensitive, reproducible assessment of myocardial function.¹ While extensively validated in the setting of functional MR,²⁻⁴ the prognostic utility of two-dimensional (2D) left ventricular global longitudinal strain (LVGLS) is less well established in patients undergoing TEER for primary MR

(PMR).⁵ To address this knowledge gap, relevant to a constantly growing number of individuals worldwide, we examined the post-mitral TEER trajectory of a large, contemporary sample as a function of baseline LVGLS. Furthermore, we evaluated the change in LVGLS from baseline to 1 month following the procedure and assessed its relation to the post-interventional course as well.

Methods

Study population and outcomes

Our study represents a retrospective analysis of the Cedars-Sinai registry of consecutive mitral TEER procedures performed between 1 January 2013

Figure 1 Study flow chart. IQR, interquartile range; LVGLS, left ventricular global longitudinal strain; MR, mitral regurgitation; TEER, transcatheter edge-to-edge repair.

and 1 January 2021 on adult patients for moderate-to-severe or greater MR leading to symptoms or myocardial remodelling. All interventions were decided upon by a dedicated Heart Team and after weighing patient preferences and best scientific evidence at the time.

Inclusion criteria for the study consisted of: (i) a diagnosis of chronic PMR, defined by abnormal valve morphology on the intraprocedural transoesophageal echocardiogram (TEE); (ii) the performance of an isolated, first-ever procedure; and (iii) availability of pre-procedural transthoracic echocardiographic (TTE) images of sufficient quality for LVGLS measurements.

The primary outcome was the composite of all-cause mortality or heart failure (HF) hospitalizations during the first post-procedural year. Secondary outcomes consisted of individual elements of the primary outcome, as well as mitral reinterventions and the persistence of significant (i.e. moderate-to-severe or greater) residual MR and/or functional disability [i.e. New York Heart Association (NYHA) class III–IV].

Conforming to the Declaration of Helsinki, the study was approved by the Cedars-Sinai Institutional Review Board, which waived the need for informed consent.

Procedural aspects

All procedures employed the MitraClip™ system (Abbott Vascular Inc., Santa Clara, CA); were performed under general anaesthesia; and utilized a trans-septal approach and a femoral venous access. TEE, fluoroscopy, and right heart catheterization served for guidance and monitoring. Technical success was defined by actual device deployment not followed by surgical intervention or major complications within the first 24 h.⁶

Echocardiographic assessment

Echocardiograms were performed by experienced sonographers and level III-trained echocardiologists and interpreted by two study members (A.S. and G.J.H.) blinded to patient history, all in accordance with societal guidelines.^{7–9} The ultrasound system used was EPIQ (Philips, Andover, MA). Post-test processing utilized PICOM365 (Scilimage, Los Altos, CA), QLAB 12.0 (Philips, Andover, MA), and TomTec Arena (TomTec Imaging Systems, Unterschleissheim, Germany) for 2D, three-dimensional (3D), and speckle-tracking measurements, respectively.

MR severity was evaluated by integration of qualitative and quantitative measures and graded as 0 (up-to-minimal), 1 (mild/mild-to-moderate), 2 (moderate), 3 (moderate-to-severe), or 4 (severe). Left ventricular ejection fraction (LVEF) and left heart chambers volumes were calculated using the Simpson's biplane method of disks. Right ventricular (RV) function was evaluated qualitatively using an eyeball assessment of global contraction in the standard (mainly RV focused) views and by virtue of the tricuspid annular plane systolic excursion (TAPSE) and TAPSE to pulmonary arterial systolic pressure ratio. LVGLS was calculated semi-automatically at peak systole by averaging software-generated endocardial strain measurements in the two-, three-, and four-chamber apical windows. For this purpose, 50.0 [interquartile range (IQR), 47.3–52.5] Hz frame-rate images were analysed, one for each view, with manual adjustments of the cardiac cycle and left ventricular (LV) endocardial borders as needed. Analysed images underwent an initial quality check by the software algorithm and were ultimately selected if containing <2 segments with poorly-defined endocardial borders per reader's judgement.

Intraprocedural pulmonary venous flow pattern improvement and normalization required any rise or the emergence of a value of ≥ 1 , respectively, in the peak systolic/diastolic velocity ratio on any pulmonary vein.

Table 1 Baseline clinical characteristics

	Total cohort (n = 323)	1st quartile LVGLS ≤ -19% (n = 81)	2nd quartile LVGLS -18.9 to -16% (n = 79)	3rd quartile LVGLS -15.9 to -12% (n = 92)	4th quartile LVGLS > -12% (n = 71)	Pooled P-value
<i>Demographic details</i>						
Age						
Median (years)	83 (76–88)	83 (73–87)	82 (74–87)	86 (79–89)	84 (78–89)	0.059
≥75 years	255 (78.9)	55 (67.9)	59 (74.7)	80 (87.0) ^a	61 (85.9)	0.006
Sex male	201 (62.2)	48 (59.3)	41 (51.9)	63 (68.5)	49 (69.0)	0.078
Non-White race	39 (12.1)	12 (14.8)	7 (8.9)	14 (15.2)	6 (8.5)	0.380
<i>Comorbidities</i>						
Body surface area, Mosteller formula (m ²)	1.8 (1.6–2.0)	1.8 (1.6–1.9)	1.7 (1.5–2.0) ^{b,c}	1.8 (1.7–2.1) ^a	1.9 (1.7–2.1) ^a	0.004
Diabetes mellitus	55 (17.2)	5 (5.2)	13 (16.5)	19 (20.9) ^a	18 (26.1) ^a	0.009
Hypertension	261 (81.1)	57 (70.4)	64 (81.0)	80 (87.9) ^a	60 (84.5)	0.025
Chronic obstructive pulmonary disease	43 (13.3)	13 (16.0)	11 (13.9)	11 (12.0)	8 (11.3)	0.812
Anaemia	181 (56.0)	44 (54.3)	49 (62.0)	52 (56.5)	36 (50.7)	0.557
Stage ≥ III chronic kidney disease	242 (75.9)	59 (72.8)	65 (82.3)	72 (79.1)	46 (67.6)	0.157
Previous myocardial infarction, PCI, or CABG	94 (29.1)	16 (19.8)	21 (26.6)	30 (32.6)	27 (38.0)	0.073
Prior stroke or transient ischaemic attack	38 (11.8)	11 (13.6)	7 (8.9)	13 (14.1)	7 (9.9)	0.650
Peripheral arterial disease	28 (8.7)	6 (7.5)	7 (8.9)	8 (8.7)	7 (9.9)	0.966
Atrial fibrillation/flutter	174 (53.9)	27 (33.3) ^b	39 (49.4) ^{a,b}	53 (57.6) ^{a,b}	55 (77.5) ^a	<0.001
<i>Heart failure features</i>						
New York Heart Association class						0.320
II	25 (7.7)	6 (7.4)	6 (7.6)	9 (9.8)	4 (5.6)	
III	130 (40.2)	24 (29.6)	36 (45.6)	37 (40.2)	33 (46.5)	
IV	168 (52.0)	51 (63.0)	37 (46.8)	46 (50.0)	34 (47.9)	
KCCQ12 score (points)	41.67 (20.83–65.50)	61.72 (29.17–72.27)	39.58 (20.83–63.54)	41.93 (22.40–60.29) ^a	32.29 (16.67–58.85) ^a	0.012
6-Min walk test distance (m)	244 (151–335)	266 (173–414)	274 (151–335)	213 (171–304)	213 (122–335)	0.182
Serum B-type natriuretic peptide level (pg/mL)	321 (163–641)	229 (136–459)	341 (146–685) ^b	317 (195–636) ^{a,b}	459 (278–847) ^a	<0.001
<i>Procedural risk</i>						
Society of Thoracic Surgeons score for mitral valve repair (points)	5.0 (2.8–8.1)	4.2 (2.5–6.2)	4.9 (2.6–9.3)	6.4 (3.1–9.6) ^a	5.7 (3.0–8.3) ^a	0.026
Mitral Regurgitation International Database score (points)	9 (7–10)	8 (7–9)	8 (7–9) ^b	9 (8–10) ^{a,b}	10 (9–11) ^a	<0.001
MitraScore (points)	3 (2–4)	3 (2–4)	3 (2–4)	3 (3–4)	3 (2–4)	0.102
<i>Treatment</i>						
<i>Medications</i>						
Beta blockers	147 (45.5)	46 (56.8)	38 (48.1) ^b	59 (64.1)	54 (76.1)	0.004

Downloaded from https://academic.oup.com/ehjcimaging/article/25/8/1164/7635256 by guest on 28 January 2025

Continued

Table 1 Continued

	Total cohort (n = 323)	1st quartile LVGLS $\leq -19\%$ (n = 81)	2nd quartile LVGLS -18.9 to -16% (n = 79)	3rd quartile LVGLS -15.9 to -12% (n = 92)	4th quartile LVGLS $> -12\%$ (n = 71)	Pooled P-value
Renin angiotensin system inhibitors	147 (45.5)	38 (46.9)	33 (41.8)	40 (43.5)	36 (50.7)	0.697
Mineralocorticoid receptor antagonists	31 (9.6)	7 (8.6)	5 (6.3)	7 (7.6)	12 (16.9)	0.120
Loop diuretics	219 (67.8)	52 (64.2)	47 (59.5)	66 (71.7)	54 (76.1)	0.119
Cardiac implantable electronic device						
Total	53 (16.4)	4 (4.9) ^b	8 (10.1) ^b	20 (21.7) ^a	21 (29.6) ^a	<0.001
Pacemaker	37 (11.5)	3 (3.7)	5 (6.3)	16 (17.4) ^a	13 (18.3) ^a	0.004
Implantable cardioverter defibrillator	3 (0.9)	0 (0.0)	0 (0.0)	2 (2.2)	1 (1.4)	0.358
Cardiac resynchronization therapy	4 (1.2)	0 (0.0)	1 (1.3)	1 (1.1)	2 (2.8)	0.479
Cardiac resynchronization therapy-defibrillator	9 (2.8)	1 (1.2)	2 (2.5)	1 (1.1)	5 (7.0)	0.091
Haemodialysis	7 (2.2)	0 (0.0)	5 (6.3)	1 (1.1)	1 (1.4)	0.903

Data are presented as number (percentage) or median (interquartile range). Figures in bold denote statistical significance.

CABG, coronary artery bypass grafting; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVGLS, left ventricular global longitudinal strain; PCI, percutaneous coronary intervention.

^aP < 0.05 vs. LVGLS $\leq -19\%$.

^bP < 0.05 vs. LVGLS $> -12\%$.

^cP < 0.05 vs. LVGLS -15.9 to -12% .

Data collection

Per institutional protocol, patients were assessed at baseline, hospital discharge, and 1-month and 1-year post-procedure. Data were retrospectively extracted from an electronic medical chart, which was updated in real-time by regional medical providers and state authorities.

Statistical analysis

The study cohort was first analysed in its entirety. Additional, exploratory survival analyses concerning the primary outcome were undertaken based on the presence of pre-procedural LV dysfunction or dilatation [i.e. LVEF of $\leq 60\%$ or LV end-systolic diameter (LVESD) of ≥ 4.0 cm] and in a subgroup of patients with measurable 1-month LVGLS.

At all stages, variables were reported as frequencies and percentages or medians and IQR, and compared using the Pearson's χ^2 , Fisher's exact, or Kruskal-Wallis tests, with the Bonferroni correction to control for type 1 errors. Temporal changes in the same parameters were assessed by the McNemar or Wilcoxon signed rank tests. Selected continuous variables were tested for correlation using the Pearson's r coefficient. Intra- and inter-observer reliability in LVGLS assessment were ascertained by the intraclass correlation coefficient, which proved high (> 0.80 , $P < 0.001$).

The evolving probabilities of experiencing clinical events as a function of LVGLS at baseline and at 1 month were illustrated using the Kaplan-Meier method, whereas cumulative events' incidences were compared by the Log-Rank test. Associations between LVGLS and outcomes were examined by multivariable analyses that incorporated parameters of perceived or previously proven¹⁰ prognostic significance that also demonstrated a P-value of < 0.1 on univariable analyses. Within the various models, continuous variables—LVGLS included—were assessed both as such and as

dichotomous, using the cohort's quartiles/medians and/or accepted thresholds for intervention.^{11,12} Either Cox or binary logistic regression methods were employed, as appropriate. Lastly, and in light of the absolute number of observations, additional conservative analyses were undertaken that included only the MitraScore and LVGLS.

Cases with missing values were censored from the relevant calculations. A two-sided P-value of < 0.05 defined statistical significance. All analyses were performed using SPSS 24 (IBM Corporation, Armonk, NY).

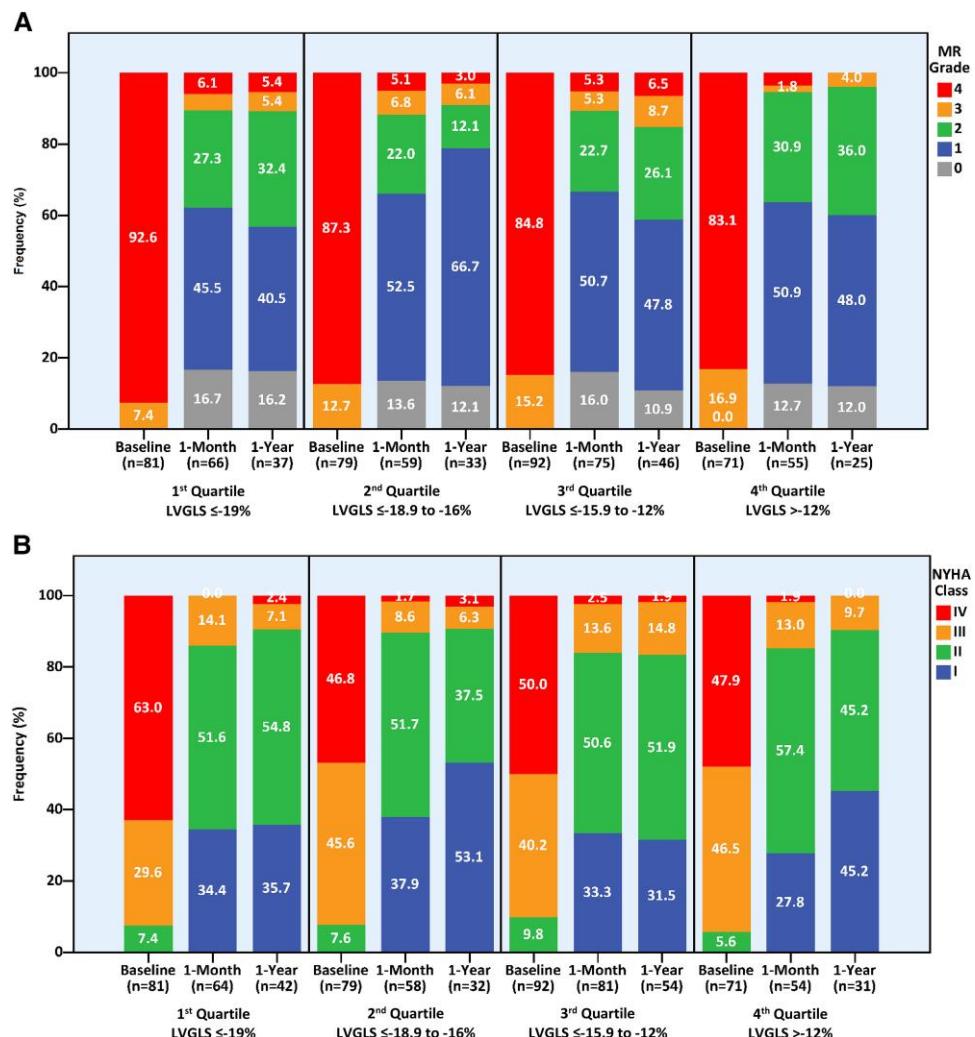
Results

Baseline characteristics of the study population

Three hundred and twenty-three patients met inclusion criteria and were followed for 460 (IQR, 129–1021) days (Figure 1). Baseline TTE, performed 26 (IQR, 8–51) days prior to TEER, demonstrated rounded LVGLS quartile ranges as follows: 1st quartile (n = 81, 25.1%), $\leq -19\%$ and below; 2nd quartile (n = 79, 24.5%), -18.9 to -16% ; 3rd quartile (n = 92, 28.5%), -15.9 to -12% ; and 4th and worst quartile (n = 71, 22.0%), above -12% .

Overall, the study cohort was elderly with a median age of 83 (IQR, 76–88) years and predominately male (n = 201, 62.2%) (Table 1). Major variations in pre-procedural clinical characteristics were apparent across the four LVGLS groups, translating to a higher age, a greater burden of comorbidities, more advanced HF indices, and an increased interventional risk within the worse (i.e. less negative) ones. Likewise, the use of cardiac implantable electronic devices rose as the LVGLS was more impaired.

Table 2 Baseline echocardiographic data


	Total cohort (n = 323)	1st quartile LVGLS ≤ -19% (n = 81)	2nd quartile LVGLS -18.9 to -16% (n = 79)	3rd quartile LVGLS -15.9 to -12% (n = 92)	4th quartile LVGLS > -12% (n = 71)	Pooled P-value
Exam time prior to procedure (days)	26 (8–51)	27 (11–50)	24 (6–54)	30 (9–55)	23 (8–50)	0.493
Mitral valve parameters						
Severe mitral regurgitation	279 (86.9)	74 (92.5)	69 (87.3)	77 (84.6)	59 (83.1)	0.316
Effective regurgitant orifice area by PISA						
Median (cm ²)	0.40 (0.29–0.53)	0.47 (0.35–0.62)	0.44 (0.30–0.61) ^a	0.39 (0.27–0.47) ^b	0.37 (0.26–0.50) ^b	0.001
≥0.40 cm ²	148 (53.0)	46 (67.5)	42 (56.8)	33 (43.4) ^b	27 (44.3) ^b	0.012
Regurgitant volume by PISA (mL)	55.8 (42.8–77.3)	70.4 (51.0–91.7)	57.8 (44.4–82.6) ^a	52.8 (39.7–74.8) ^b	47.7 (35.6–63.3) ^b	<0.001
Transmital mean pressure gradient						
Median (mmHg)	3 (2–4)	3 (2–4)	3 (2–4)	3 (2–4)	3 (2–4)	0.894
≥5 mmHg	53 (16.5)	14 (17.7)	12 (15.2)	18 (19.6)	9 (12.7)	0.668
Mitral valve prolapse/flail						
Any	311 (96.3)	80 (98.8)	76 (96.2)	89 (96.7)	66 (93.0)	0.302
Bileaflet prolapse	48 (14.9)	11 (13.6)	13 (16.5)	13 (14.1)	11 (15.5)	0.955
Flail	191 (59.1)	49 (60.5)	49 (62.0)	58 (63.0)	35 (49.3)	0.138
Mitral annular calcification						
Any	105 (32.5)	21 (25.9)	29 (36.7)	35 (38.0)	20 (28.2)	0.248
Moderate and above	48 (14.9)	9 (11.1)	13 (16.5)	17 (18.5)	9 (12.7)	0.517
Rheumatic changes	1 (0.3)	1 (1.2)	0 (0.0)	0 (0.0)	0 (0.0)	0.392
Left heart parameters						
Left ventricular ejection fraction						
Median (%)	63 (55–68)	65 (60–71)	65 (61–70) ^{a,c}	59 (54–66) ^b	51 (38–64) ^b	<0.001
≤60%	143 (44.3)	23 (28.4)	19 (24.1)	54 (58.7) ^b	47 (66.2) ^b	<0.001
<50%	45 (13.9)	0 (0.0)	1 (1.3)	11 (12.0) ^{a,b}	33 (46.5) ^b	<0.001
Left ventricular end-diastolic diameter (cm)	50 (45.5–55)	50 (47–55)	49 (44–53)	50 (45–55)	51 (44–58)	0.501
Left ventricular end-systolic diameter (cm)						
Median (cm)	3.2 (2.8–3.8)	3.1 (2.8–3.5) ^{a,c}	3.1 (2.5–3.5) ^{a,c}	3.3 (2.9–3.9) ^b	3.5 (2.9–4.4) ^b	<0.001
≥4.0 cm	61 (18.9)	6 (7.4)	7 (8.9) ^b	22 (23.9) ^b	26 (36.6) ^b	<0.001
Left ventricular ejection fraction ≤60% or left ventricular end-systolic diameter ≥4.0 cm	153 (47.4)	26 (32.1)	20 (25.3) ^a	59 (64.1) ^b	48 (67.6) ^b	<0.001
Left ventricular mass index, ASE formula (g/m ²)	118.4 (93.2–141.3)	113.5 (91.0–135.9)	114.9 (90.5–135.7)	126.9 (96.6–144.2)	119.8 (96.3–149.4)	0.100
Left atrial volume index						
Median (mL/m ²)	60.0 (44.2–75.5)	56.0 (43.0–72.5)	58.0 (39.8–73.0)	58.0 (44.9–73.2)	68.4 (54.0–84.5)	0.059
≥60 mL/m ²	153 (49.4)	32 (41.0)	35 (46.1)	40 (46.0)	46 (66.7) ^b	0.011

Continued

Table 2 Continued

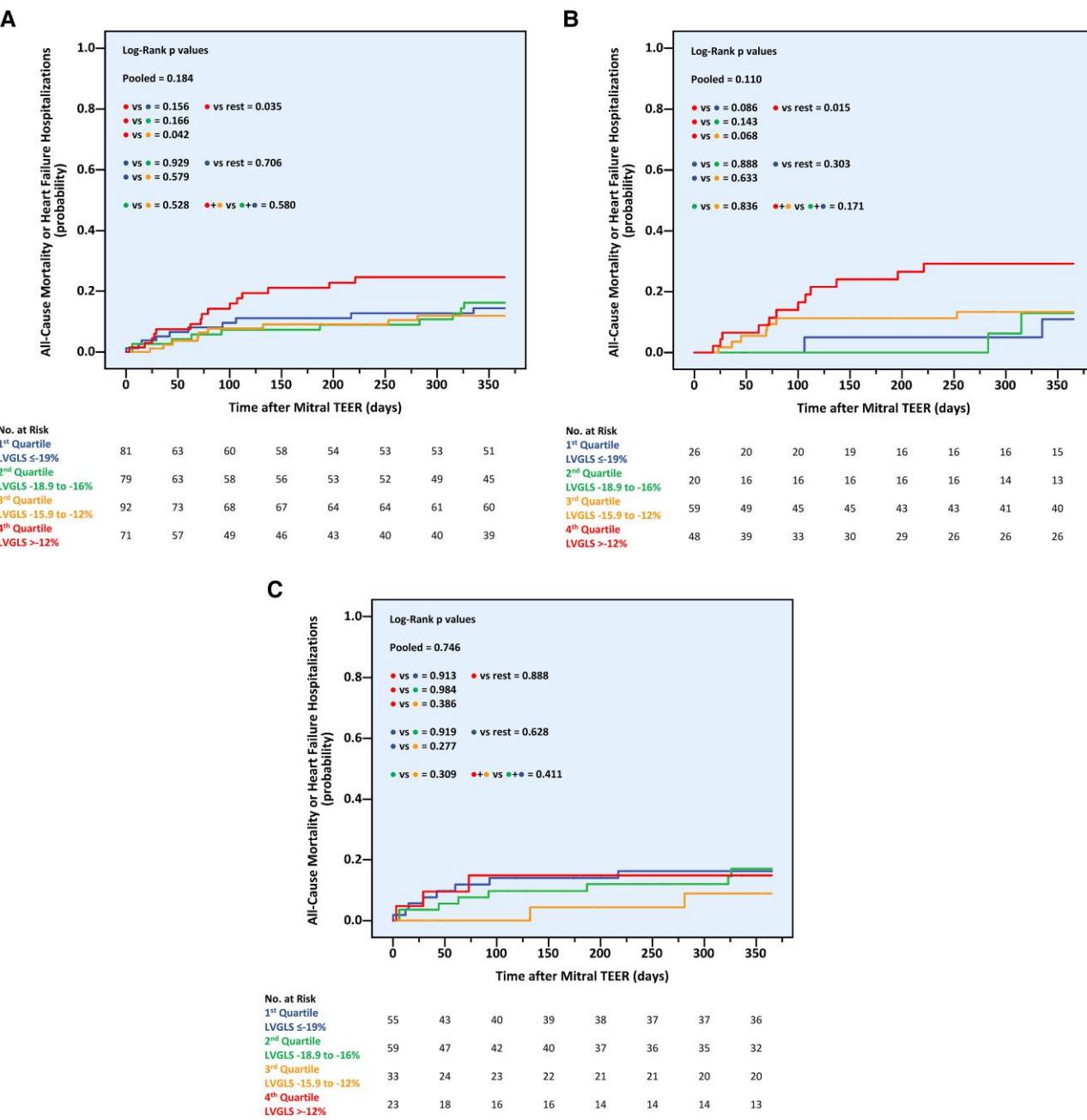
	Total cohort (n = 323)	1st quartile LVGLS ≤ -19% (n = 81)	2nd quartile LVGLS -18.9 to -16% (n = 79)	3rd quartile LVGLS -15.9 to -12% (n = 92)	4th quartile LVGLS > -12% (n = 71)	Pooled P-value
Moderate and above aortic stenosis/regurgitation	32 (9.9)	7 (8.6)	12 (15.2)	8 (8.7)	5 (7.0)	0.331
Right heart parameters						
Qualitative global right ventricular dysfunction	72 (24.6)	9 (12.5) ^a	15 (20.5) ^a	19 (22.9) ^a	29 (44.6)	<0.001
Right ventricular end-diastolic basal diameter (cm)						
Median (cm)	3.9 (3.5-4.4)	3.8 (3.4-4.3)	4.1 (3.5-4.6)	3.9 (3.3-4.4)	4.0 (3.6-4.4)	0.058
≥ 4.2 cm	108 (34.1)	22 (27.5)	32 (40.5)	29 (33.0)	25 (35.7)	0.372
Moderate-to-severe and above tricuspid regurgitation	51 (15.8)	12 (14.8)	18 (22.8)	10 (10.9)	11 (15.5)	0.200
Tricuspid annular plane systolic excursion (TAPSE)						
Median (mm)	18 (15-22)	21 (18-26)	16 (16-22) ^{ab}	17 (15-21) ^{ab}	16 (12-18) ^b	<0.001
<17 mm	81 (36.0)	10 (17.5)	18 (31.0)	28 (42.4) ^b	25 (56.8) ^b	<0.001
Pulmonary arterial systolic pressure (PASP)						
Median (mmHg)	43 (33-57)	40 (31-55)	48 (35-62)	43 (33-58)	45 (32-56)	0.402
> 50 mmHg	127 (39.3)	33 (40.7)	35 (44.3)	33 (35.6)	26 (39.6)	0.667
TAPSE/PASP (mm/mmHg)	0.41 (0.30-0.60)	0.51 (0.37-0.80)	0.41 (0.29-0.58) ^{ab}	0.44 (0.30-0.60) ^{ab}	0.34 (0.23-0.44) ^b	0.001
Speckle tracking						
Global longitudinal strain (%)	-15.9 (-19.0 to -12.4)	-20.8 (-22.4 to -20.0)	-17.5 (-18.5 to -16.9) ^{ab}	-14.1 (-15.0 to -12.9) ^{ab}	-10.2 (-11.2 to -8.6) ^b	<0.001

Data are presented as number (percentage) or median (interquartile range). Figures in bold denote statistical significance.
ASE, American Society of Echocardiography; LVGLS, left ventricular global longitudinal strain; PISa, proximal isovelocity surface area.
^ap < 0.05 vs. LVGLS < -12%.
^bp < 0.05 vs. LVGLS < -19%.

Figure 2 Mitral regurgitation grade and functional status at baseline and during the first post-procedural year. (A) Mitral regurgitation grade, (B) functional status. LVGSL, left ventricular global longitudinal strain; MR, mitral regurgitation; NYHA, New York Heart Association.

Regarding echocardiographic parameters, most patients ($n = 279$, 86.9%) presented to TEER with severe MR due to prolapse/flail, the proportion of which was comparable in the various study groups (Table 2). Biventricular function and left heart dimensions were generally more abnormal among subjects with worse LVGSL.

Procedural details and post-procedural results


All patients underwent similarly successful procedures and exhibited a comparable periprocedural course irrespective of LVGSL allocation (see Supplementary data online, Table S1). Yet, a significant drop in invasively measured mean pulmonary arterial pressure was only observed in those of the 1st (i.e. most negative) LVGSL quartile group.

Resembling the immediate post-procedural phase, the 1-month and 1-year follow-up appointments revealed similarly significant improvement from baseline in MR severity and NYHA functional class across all LVGSL groups (see Supplementary data online, Tables S2 and S3 and Figure 2). Concurrently, 1-month left heart function and dimensions remained more deranged among patients with worse LVGSL.

Primary outcome

By 1-year post-procedure, 44 (13.6%) patients sustained the primary outcome, a composite of all-cause deaths ($n = 28$, 8.7%) or HF hospitalizations ($n = 24$, 7.4%) (see Supplementary data online, Table S3). Subjects within the worst (i.e. above -12%) LVGSL group also suffered the highest cumulative incidence of this composite event (Figure 3), and the worst LVGSL quartile range conferred a higher risk for it (HR 1.68, 95% CI 1.02–5.46, $P = 0.047$) (Table 3 and Supplementary data online, Table S4).

Upon an exploratory subgroup analysis, a significant association between an extremely impaired (i.e. less negative than -12%) LVGSL at baseline and the primary outcome was only evident in patients exhibiting abnormal LVEF or LVESD prior to the procedure ($n = 153$, 47.3%) (Log-Rank $P = 0.015$, HR 1.18, 95% CI 1.01–1.37, $P = 0.032$) (Figure 3 and Supplementary data online, Table S5). Further, patients with both conditions ($n = 48$, 14.9%) experienced a higher cumulative incidence of the primary outcome compared with those with either or none (see Supplementary data online, Figure S1). This is in spite of abnormal LVEF/LVESD not demonstrating any association with the primary outcome by itself.

Figure 3 One-year cumulative incidence of the primary outcome (A) total cohort, (B) patients with left ventricular dysfunction or dilatation, (C) patients without left ventricular dysfunction or dilatation. LVGELS, left ventricular global longitudinal strain; TEER, transcatheter edge-to-edge repair.

Secondary outcomes

Overall mortality was observed more frequently and at an earlier stage following TEER within the worst LVGELS quartile group (see *Supplementary data online*, *Table S3* and *Figure 4*). In contrast, mitral reinterventions, reported in a total of 24 (7.4%) cases, tended to be performed at a more distant timeframe among patients harbouring the worst vs. best (i.e. -19% or lower) LVGELS (274 ± 141 vs. 251 ± 149 days, Log-Rank $P = 0.055$). No differences were noted in the rates or cumulative incidences of other outcomes across the LVGELS quartiles and median groups. Accordingly, freedom from significant residual MR and/or functional incapacitation was observed in a great majority of patients remaining alive and in active surveillance

at Cedars-Sinai regardless of pre-procedural LVGELS, reaching 77.0% ($n = 104/135$) and 88.1% ($n = 141/159$) in the total cohort, respectively.

As for outcomes' risks, only that of mortality was associated with baseline LVGELS, being higher in patients with the worst quartile values (HR 1.75, 95% CI 1.08–4.74, $P = 0.041$) (*Table 3* and *Supplementary data online*, *Tables S6–S8*).

One-month LVGELS

Of the 144 (45.3%) patients with analysable echocardiograms at 1-month post-procedure, 92 (63.9%) experienced a net worsening

Table 3 Risk for one-year outcomes

	Risk associated with less negative LVGLS		Risk associated with LVGLS > -19%		Risk associated with LVGLS > -16%		Risk associated with LVGLS > -12%	
	HR/OR (95% CI) ^a	P-value	HR/OR (95% CI) ^a	P-value	HR/OR (95% CI) ^a	P-value	HR/OR (95% CI) ^a	P-value
<i>Primary outcome</i>								
All-cause mortality or heart failure hospitalizations	1.09 (0.94–1.28) ^b	0.248	1.15 (0.57–2.32)	0.707	1.18 (0.65–2.14)	0.581	1.68 (1.02–5.46) ^b	0.047
<i>Secondary outcomes</i>								
All-cause mortality	1.03 (0.91–1.17) ^b	0.667	1.11 (0.30–4.16) ^b	0.877	1.30 (0.61–2.74)	0.495	1.75 (1.08–4.74) ^b	0.041
Heart failure hospitalizations	1.02 (0.91–1.14) ^b	0.740	1.32 (0.57–3.04)	0.514	1.57 (0.71–3.47)	0.261	1.65 (0.72–3.79)	0.239
Mitral reinterventions	0.95 (0.83–1.08) ^b	0.416	0.54 (0.24–1.24)	0.146	0.88 (0.30–2.58) ^b	0.820	0.32 (0.08–1.37)	0.125
All-cause mortality, heart failure hospitalizations, or mitral reinterventions	1.03 (0.97–1.09)	0.397	0.93 (0.53–1.64)	0.802	0.89 (0.54–1.47)	0.649	1.38 (0.79–2.40)	0.263
Significant residual mitral regurgitation	1.01 (0.89–1.15) ^c	0.890	0.98 (0.29–3.28)	0.968	1.14 (0.39–3.34)	0.807	0.30 (0.04–2.42)	0.261
Functional disability	1.06 (0.94–1.19) ^d	0.346	1.40 (0.44–4.48)	0.573	1.57 (0.59–4.23)	0.369	0.75 (0.20–2.75)	0.665
Significant residual mitral regurgitation or functional disability	1.07 (0.97–1.18)	0.204	1.69 (0.63–4.53)	0.298	1.71 (0.75–3.88)	0.199	0.66 (0.21–2.12)	0.488

CI, confidence interval; HR, hazard ratio; LVGLS, left ventricular global longitudinal strain; OR, odds ratio. Figures in bold denote statistical significance.

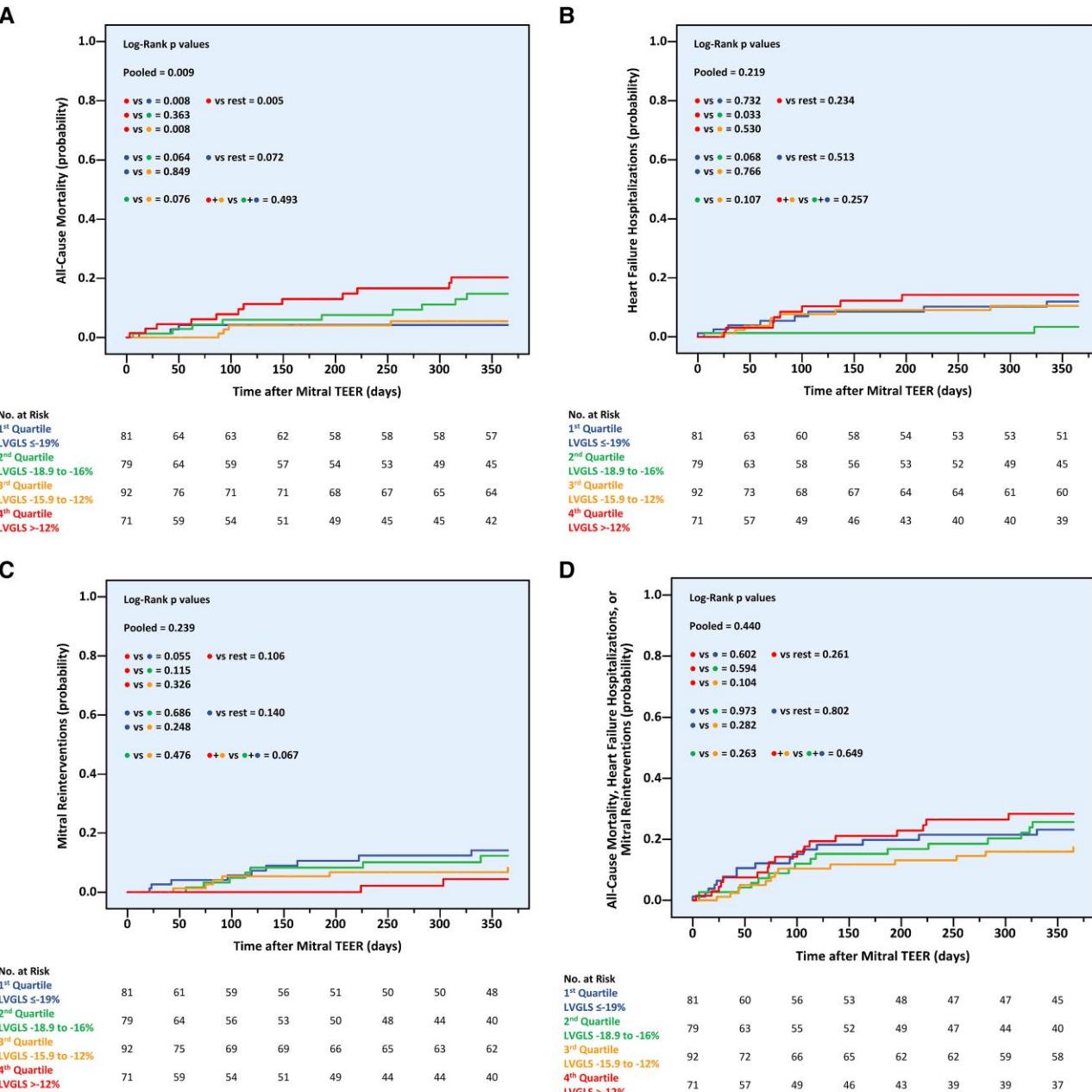
^aPer univariable analysis unless specified otherwise.

^bPer multivariable analysis.

^cModerate-to-severe and above mitral regurgitation.

^dNew York Heart Association class III or IV.

(i.e. increase) in the LVGLS compared with baseline, by an absolute 1.6 (IQR, -0.8–3.9) % and a relative 8.9 (IQR, -5.5–25.2) % (see *Supplementary data online*, *Table S3*). While the 1-month value directly correlated with its baseline counterpart, the difference between the two inversely correlated with the pre-procedural one (Pearson's $r = 0.54$ and -0.61 , respectively, all $P < 0.001$). Consequently, patients with less negative baseline LVGLS exhibited similarly less negative 1-month LVGLS, but at the same time numerically fewer patients within the worse baseline LVGLS quartile groups experienced worsening in the LVGLS at 1 month.


According to exploratory survival analysis, 1-month LVGLS less negative than the subgroup's rounded median of -15% was associated with higher cumulative incidence and risk of the primary outcome (unadjusted HR 6.07, 95% CI 1.37–8.66, $P = 0.018$) (see *Supplementary data online*, *Figure S2*). However, no prognostic significance was demonstrated for the quantitative/qualitative change in LVGLS. Lastly, and per multivariable model, 1-month LVGLS less negative than -15% was not associated with baseline LVGLS but rather with increased mitral effective regurgitant orifice area and reduced RV-pulmonary arterial coupling (see *Supplementary data online*, *Table S9*).

Discussion

Our study explored the correlates and prognostic significance of LVGLS, as assessed by 2D TTE, in real-world patients undergoing TEER for chronic PMR. Analysing a single-centre registry of 323 isolated, first-time procedures, we found that: (i) less negative pre-procedural LVGLS marked a sicker patient profile,

characterized by greater burden of comorbidities, more pronounced HF and biventricular dysfunction, and higher interventional risk; (ii) notwithstanding differences in presentation, overall procedural aspects were comparable across the various baseline LVGLS quartile groups and technical success rates were similarly high irrespective of baseline LVGLS, leading to a significant and sustained improvement in MR severity and functional capacity compared with baseline in most cases; (iii) an LVGLS of above -12% at baseline, corresponding to the cohort's 4th and worst quartile, was associated with increased cumulative incidence and risk of the primary composite outcome of all-cause mortality or HF hospitalizations at 1 year, a finding that was accounted for by death events and confined to patients with abnormal LVEF/LVESD; (iv) upon exploratory analysis, one-month LVGLS directly correlated with and was generally worse compared with baseline LVGLS, whereas the degree of LVGLS deterioration was less pronounced in patients with a more impaired baseline LVGLS; and (v) a worse LVGLS at 1 month, but not the presence or extent of LVGLS worsening from baseline to 1 month, was associated with a higher cumulative incidence of the primary outcome.

To date, literature on speckle tracking analysis in the setting of mitral TEER has mainly focused on functional MR cohorts. In a 565-patient sub-analysis of the COAPT,² worse baseline LVGLS values were accompanied by more advanced echocardiographic and biochemical indices of LV dysfunction, and excess mortality or HF hospitalizations were noted within the worst (vs. best) LVGLS tertile group during the 10–24-month period post-intervention. Noteworthy, LVGLS as a continuous variable was not independently associated with the risk for the combined endpoint. Another 380-case study from our institution³ found that a baseline LVGLS of above -7% was associated with

Figure 4 One-year cumulative incidence of secondary outcomes. (A) All-cause mortality. (B) Heart failure hospitalizations. (C) Mitral reinterventions. (D) All-cause mortality, heart failure hospitalizations, or mitral reinterventions. LVGELS, left ventricular global longitudinal strain; TEER, transcatheter edge-to-edge repair.

more deranged pre-procedural LV function and dimensions and conferred increased risk of deaths or HF hospitalizations along the first 2 post-procedural years. Like the COAPT sub-study, a male predominance was most evident in the worse LVGELS group, however overall patient profile was comparable. Procedural features and technical success, too, were not related to baseline LVGELS. The most recent study prior to ours,⁴ which employed 172 patients with reduced LVEF, almost all with functional ($n = 123$) or mixed-aetiology ($n = 42$) MR, largely reproduced the results of the earlier works and further revealed worse LV metrics and 1-year cardiovascular mortality incidence and risk in those with baseline LVGELS of

$>-8.4\%$ and LVEF of $<30\%$. No significant differences in baseline clinical characteristics were observed across the various LVGELS-LVEF groups. Regarding post-procedural LVGELS, several smaller explorations (22–65 patients), again all in functional MR samples, have demonstrated either no change,¹³ improvement,¹⁴ or a mixed trend¹⁵ in LVGELS from baseline to 6 months. In the only study thus far⁵ to report on predominantly primary MR patients ($n = 137/155$, 88.4%), baseline LVGELS less negative than -14.5% was associated with higher rate, cumulative incidence, and risk of all-cause mortality at 1-year post-TEER overall, offering incremental predictive value to LVEF and the combination of LVEF and the Society of Thoracic

Surgeons risk score. Notably, median follow-up duration was less than an actual 1 year and the multivariable models incorporated three covariates at a time. The current analysis, representing the first large-scale study dedicated to LVGLS in TEER patients with PMR only, suggested speckle tracking imaging as clinically and prognostically important in these cases as well, as outlined below.

Three main 'take-home' messages may be offered based on our study. The first is that TEER for chronic PMR appears to be equally feasible, safe, and efficacious among patients with diverse baseline LVGLS ranges, including those with the worst, or least negative, one. Consequently, baseline LVGLS may not play a substantial role in forecasting procedural complexity and success in this subset of patients. Other than reflecting operator experience and infrastructure capabilities of a high-volume centre, the comparable procedural aspects and results observed in the various LVGLS groups in our registry may also be explained by similarities in baseline valvular substrate and related HF symptomology. Alternatively, it could be that mitral TEER is inherently advantageous across all LVGLS values and irrespective of MR aetiology, a notion that may be tested by future, more heterogeneous studies.

The second message arising from our study is that in patients undergoing TEER for chronic PMR, baseline LVGLS may nevertheless serve as an indicator of general morbidity and expected post-procedural clinical course, thus aiding in risk stratification and case selection. Although not independently associated with the odds of above-moderate MR and/or NYHA class III–IV persistence at 1 year, nor with the risk for 1-year HF hospitalizations and mitral reinterventions, a worse LVGLS range at baseline did imply higher burden of comorbidities and ventricular dysfunction pre-procedurally and was linked with reduced survival during the first post-interventional year. Interestingly, it was only in those patients with pre-existent LV dysfunction/dilatation that baseline LVGLS assumed a prognostic role—despite the latter not possessing any independent predictive ability on their own. Apart from highlighting the incremental value of speckle tracking over traditional 2D imaging, this finding underscores the importance of integrating both for the purpose of outcome prediction. In view of the study's retrospective nature as well as small absolute sample size, low number of events, and lack of data on specific causes of death, we were not able to verify causality and specifically determine whether LVGLS merely served as a risk marker or also actively participated in the generation of outcomes. These matters may be best addressed by a larger, prospective research.

On a final note, our study suggested that LVGLS prior to TEER for chronic PMR could be used for estimating the short-term LVGLS response to the intervention, and that LVGLS at 1-month post-procedure may be prognostically meaningful as is the baseline one. As mentioned, the worse the pre-TEER LVGLS, the worse the 1-month LVGLS, and the less pronounced deterioration in LVGLS from baseline to 1 month. This was consistent with LVGLS being a surrogate of loading conditions and with mitral TEER inflicting a general unloading effect (and consequent reduction in LV contractile force).¹⁶ As for prognostication, a worse post-interventional LVGLS was associated with earlier, more frequent composite events, presumably reflecting lasting associations with the pre-procedural state. The reason underlying the lack of association between the change in LVGLS from baseline to 1 month and the primary outcome could originate in reduced statistical power. This may explain the discrepancy between the results of the current study and those of our recent report showing a more favourable course in the presence (vs. absence) of LVEF reduction at 1 month following TEER for PMR.¹⁶

Limitations

First, the study's single-centre, retrospective design, along with small sample of selected subjects treated in a high-skilled facility, may hamper generalizability of results. However, our cohort was among the largest to date in relative terms, resembled a nationwide registry,¹⁷ and was

blindly assessed by experienced readers. Further enhancing validity were the study's focus on isolated, first-time procedures and its reliance on comprehensive regression models. Secondly, the low number of events as well as missing data may have interfered with interpretation of results, making some of the analyses—and particularly those that pertain to the 1-month LVGLS—exploratory. Yet, data non-availability corresponded to that of previous real-world registries; was similar across the different groups; encompassed only echocardiographic findings and functional status (as opposed to clinical events that were documented in all patients regardless of follow-up location); and was not associated with outcomes—thus limiting the possibility of bias. Thirdly, the assessment of LVGLS relied on 2D TTE, which is patient-, operator-, and machine-dependent. However, our approach demonstrated good intra- and inter-observer reliability; reflected common practice; is readily applicable; and could allow for future comparative studies. Fourthly, and again expressing the real-world nature of the study, medical treatment was suboptimal, making it difficult to extrapolate findings to medically optimized cohorts. Lastly, our results may not apply to rheumatic MR cases as these were under-represented in the study.

Conclusion

Based on the Cedars-Sinai experience, TEER for chronic PMR was equally feasible, safe, and efficacious in all pre-procedural LVGLS settings, leading to a comparable, significant improvement in MR grade and functional capacity. Nevertheless, post-procedural survival was less favourable among patients exhibiting the worst baseline LVGLS values, presumably reflecting their more advanced disease state and higher-risk profile. Larger, prospective, and preferentially multi-centre studies are needed to validate and better characterize the emerging prognostic significance of LVGLS in this population.

Supplementary data

Supplementary data are available at *European Heart Journal - Cardiovascular Imaging* online.

Acknowledgements

The study was supported in part by the California Chapter of the American College of Cardiology through the Save a Heart Foundation.

Conflict of interest: R.R.M. received grant support from Edwards Lifesciences Corporation, is a consultant for Abbott Vascular, Cordis, and Medtronic, and holds equity in Entourage Medical. T.C. is a consultant, proctor, and speaker for Edwards Lifesciences and Medtronic, is a consultant for Abbott Lifesciences, and is a consultant and speaker for Boston Scientific. Other authors have no conflicts of interest to disclose.

Data availability

The data underlying this article will be shared upon reasonable request to the corresponding authors.

Author contribution

A.S. has conceptualized the project, performed statistical analysis, and written the first draft of the manuscript. G.J.H. has taken part in data collection and assisted in writing the first draft of the manuscript. R.J.S. has supervised the project. All co-authors have participated in revision of the text.

References

- Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. *J Am Coll Cardiol Img* 2018; **11**:260–74.
- Medvedofsky D, Milhorini Pio S, Weissman NJ, Namazi F, Delgado V, Grayburn PA et al. Left ventricular global longitudinal strain as a predictor of outcomes in patients with heart failure with secondary mitral regurgitation: the COAPT trial. *J Am Soc Echocardiogr* 2021; **34**:955–65.
- Yoon SH, Makar M, Kar S, Koseki K, Oakley L, Sekhon N et al. Impact of left ventricular global longitudinal strain on outcomes after transcatheter edge-to-edge repair in secondary mitral regurgitation. *Am J Cardiol* 2022; **182**:69–76.
- Fernandez-Peregrina E, Asmarats L, Estevez-Loureiro R, Pascual I, Bastidas D, Benito-González T et al. Global longitudinal strain predicts outcomes in patients with reduced left ventricular function undergoing transcatheter edge-to-edge mitral repair. *J Clin Med* 2023; **12**:4116.
- Fukui M, Niikura H, Soraja P, Hashimoto G, Bae R, Garcia S et al. Identification of sub-clinical myocardial dysfunction and association with survival after transcatheter mitral valve repair. *J Am Soc Echocardiogr* 2020; **33**:1474–80.
- Stone GW, Adams DH, Abraham WT, Kappetein AP, Généreux P, Vranckx P et al. Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions: a consensus document from the Mitral Valve Academic Research Consortium. *J Am Coll Cardiol* 2015; **66**:308–21.
- Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. *J Am Soc Echocardiogr* 2017; **30**:303–71.
- Zamorano JL, Badano LP, Bruce C, Chan KL, Gonçalves A, Hahn RT et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. *J Am Soc Echocardiogr* 2011; **24**:937–65.
- Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *J Am Soc Echocardiogr* 2015; **28**:1–39.e14.
- Raposeiras-Roubin S, Adamo M, Freixa X, Arzamendi D, Benito-González T, Montefusco A et al. A score to assess mortality after percutaneous mitral valve repair. *J Am Coll Cardiol* 2022; **79**:562–73.
- Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP III, Gentile F et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. *Circulation* 2021; **143**:e72–227.
- Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J et al. 2021 ESC/ EACTS guidelines for the management of valvular heart disease. *Eur Heart J* 2022; **43**: 561–632.
- Kamperidis V, van Wijngaarden SE, van Rosendaal PJ, Kong WKF, Regeer MV, van der Kley F et al. Mitral valve repair for secondary mitral regurgitation in non-ischaemic dilated cardiomyopathy is associated with left ventricular reverse remodelling and increase of forward flow. *Eur Heart J Cardiovasc Imaging* 2018; **19**:208–15.
- Vitarelli A, Mangieri E, Capotosto L, Tanzilli G, D'Angeli I, Viceconte N et al. Assessment of biventricular function by three-dimensional speckle-tracking echocardiography in secondary mitral regurgitation after repair with the MitraClip system. *J Am Soc Echocardiogr* 2015; **28**:1070–82.
- van Wijngaarden SE, Kamperidis V, Al-Amri I, van der Kley F, Schalij MJ, Ajmone Marsan N et al. Effects of transcatheter mitral valve repair with MitraClip on left ventricular and atrial hemodynamic load and myocardial wall stress. *J Card Fail* 2018; **24**:137–45.
- Shechter A, Kaewkes D, Lee M, Makar M, Patel V, Koren O et al. Correlates and prognostic implications of LVEF reduction after transcatheter edge-to-edge repair for primary mitral regurgitation. *Eur Heart J Cardiovasc Imaging* 2023; **25**:136–47.
- Makkar RR, Chikwe J, Chakravarty T, Chen Q, O'Gara PT, Gillinov M et al. Transcatheter mitral valve repair for degenerative mitral regurgitation. *JAMA* 2023; **329**:1778–88.